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ABSTRACT 
 
Urban mass transit such as metro plays a significant role in transportation in metropolitan areas. Its 
most	 notable usage is the morning commute situation. It is known that such transit can be delayed 
due to congestion under excessive passenger demand. However, there are no tractable models of 
transit systems considering physics of its delay and congestion. It makes difficult to obtain realistic 
policy implications on morning commute with excessive demand. In this study, in order to account 
this issue, an analytical model of dynamic urban rail transit is developed considering physical 
interaction between the train-congestion and passenger-congestion. The model is based on 
fundamental diagram of rail transit system which is analytically derived by this study, and an exit-
flow model. The notable feature of the proposed model is its high analytical tractability so that it can 
be applied to obtain policy implications on morning commute problems. 
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1.   INTRODUCTION 
Urban mass transit such as metro plays a significant role in transportation in metropolitan areas. Its 
most	 notable usage is the morning commute situation, in which excessive passenger demand is 
generated during a short time period. Several studies (e.g., Tabuchi, 1993; Kraus and Yoshida, 2002; 
Tian et al., 2007; de Palma et al., 2015) have analyzed such situations with some simplifications in 
order to obtain policy implications on management strategies for them (e.g., pricing and control in the 
morning commute problems).  
 
It is known that urban mass transit often suffered from delay caused by congestion, even if there are 
no serious incidents nor accidents (Kato et al., 2012; Tirachini et al., 2013; Kariyazaki et al., 2015). 
For example, following two types of congestion are observed in rail transit: 
�   train-congestion: congestions involving consecutive trains using the same tracks. 
�   passenger-congestion: congestion of passengers at station platforms, namely, passenger’s 

bottleneck congestion at the boarding doors of a train while it is stopped at a station. 
These two types of congestions interact with each other (Wada et al., 2012; Tirachini et al., 2013). For 
example, passenger-congestion can extend dwell time of a train at a station. Then, the unintentionally 
extended dwell time interrupts the operation of the following train and causes train-congestion due to 
its high service frequency. Since service frequency is deteriorated by the train-congestion, the 
passenger-congestion at stations intensifies—this is a vicious cycle for a short term. In addition, for a 
long term, observational studies show that passengers in the Tokyo metropolitan area suffer such train 
delay and congestion almost daily (Kariyazaki et al., 2015); and their choice of departure time is 
affected by the chronic delays caused by the congestions (Kato et al., 2012). The various effects of 
these congestions are comprehensively reviewed by Tirachini et al. (2013). 
 
Therefore, in order to obtain realistic policy implications on morning commute with excessive 
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demand (which is the case for many metropolitan areas), dynamics of transit systems including delay 
and congestion must be taken into account, just like similar problems in road traffic (Arnott et al., 
1993). However, to the authors’ knowledge, no study has investigated the morning commute problems 
in transit systems with dynamic delay and congestion—in the aforementioned studies (Tabuchi, 1993; 
Kraus and Yoshida, 2002; Tian et al., 2007; de Palma et al., 2015), travel time of transit system is 
assumed to be constant and/or determined by static models. This might be due to that we do not have 
tractable models of transit systems considering physics of its dynamic delay and congestion.  
 
The aim of this study is to develop an analytical model of the dynamics of an urban rail transit 
considering physical interaction between the train-congestion and passenger-congestion, while 
keeping its analytical tractability high so that it can be applied to obtain policy implications on 
morning commute problems. In Section 2, a simple and tractable operation model of rail transit is 
formulated that considers train-congestion, passenger-congestion, and the interaction between them. 
The model describes theoretical relation between passenger-flow and speed under ideal conditions—
that is, a fundamental diagram. Then, in Section 3, a macroscopic and dynamic model of rail transit is 
developed by extensively employing a continuous approximation approach with the fundamental 
diagram, which is also widely used for auto traffic flow—that is, an exit-flow model. Finally, in 
Section 4, the approximation accuracy of the macroscopic model is validated through a comparison 
with microscopic simulation. 
 

2.   FUNDAMENTAL DIAGRAM OF RAILWAY OPERATION 

In this section, we analytically derive a fundamental diagram of an urban rail transit operation, namely, 
relation among train-flow, train-density, and passenger-flow, based on microscopic operation 
principles. 

2.1   Assumptions on Railway Operation 

We assume following principles on urban rail transit operation. They are twofold: train’s dwell 
behavior at a station for passenger boarding and cruising behavior between stations. Note that they are 
equivalent to those employed by Wada et al. (2012). 
 
The passenger boarding time is modeled using a bottleneck model. That is, the flow-rate of passenger 
boarding is assumed to be constant, 𝜇", if there is a queue; and there is a buffer time (e.g., time 
required for door opening/closing), 𝑔$, for the dwell time. Then, the dwell time of a train at a station, 
𝑡$, can be represented as 

𝑡$ =
𝑛"
𝜇"
+ 𝑔$, (1) 

where 𝑛"  is number of waiting passengers at the station (or total number of passengers who are 
getting in and off  the train). Passengers waiting a train at a station are assumed to board the first train 
arrived—it means that passenger storage capacity of a train is assumed to be unlimited. 
 
The cruising behavior of a train is modeled using the Newell’s simplified car-following model 
(Newell, 2002). In this model, a vehicle travels as fast as possible while maintaining the minimum 
safety clearance. Specifically, 𝑥+(𝑡), position of a train 𝑚 at time 𝑡, is described as 

𝑥+ 𝑡 = min 𝑥+ 𝑡 − 𝜏 + 𝑣5𝜏, 𝑥+67 𝑡 − 𝜏 − 𝛿 , (2) 
where 𝑚 − 1 indicates the preceding train of train 𝑚, 𝜏 is the physical minimum headway time, 𝑣5 is 
the free-flow speed (i.e., maximum speed), and 𝛿 is the minimum spacing. Without loss of generality, 
we introduce variable buffer headway time, ℎ5 	  ≥ 0, to describe traffic in free-flow regime; therefore, 
headway in free-flow regime is 𝜏 + 𝛿/𝑣5 + ℎ5. 

2.2   Steady State of Railway Operation 

Here we consider a steady state of an urban rail transit operation under the aforementioned 
assumptions. A steady state is an idealized state of a traffic where the state (typically flow, density, 
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and speed) is characterized by a fundamental diagram (FD) of the traffic (Daganzo, 1997). In the case 
of transit operation, it can be defined as a state such that: the model parameters, namely, 
𝜇", 𝑔$, 𝑣5, 𝜏, 𝛿, are constant; the distance between each adjacent stations, 𝑙, is constant; the length of 
railroad is sufficiently long; all the trains stops every station; the headway time between each 
successive trains, 𝐻, is constant; the cruising speed, 𝑣, of all the trains is the same; and the passenger-
flow to each station, 𝑞", is the same. Under a steady state, the dwell time of a train at a station is 
represented as 𝑞"𝐻/𝜇" + 𝑔$ ; because 𝑛"  is equal to 𝑞"𝐻. Note that control strategy of the transit 
operation (e.g., schedule-based, headway-based) is not explicitly specified here, as in the Newell’s 
car-following model (Newell, 2002). However, any strategy whose stationary point of its dynamics is 
the steady state should achieve the steady state, if there are no delays (Wada et al., 2012). 
 
Railway operations under different steady states are illustrated by Fig. 1 as time–space diagrams, 
where the horizontal axis indicates time, the vertical axis indicates space, and the curves indicate 
trajectories of trains. In each sub-figure in the figure, train m arrives and departs station 𝑖, travels to 
station 𝑖	   + 	  1 with cruising speed 𝑣, and arrives station 𝑖	   + 	  1	  under different conditions. 

 
Figure 1. Time–space diagrams of rail transit operation under steady states. 

2.3   Fundamental Diagram 

Independent variables of traffic state of the transit operation can be defined as train-flow 𝑞, train-
density 𝑘 , and passenger-flow 𝑞" . Now suppose that relation among the independent variables of 
traffic state under every steady state can be expressed using a function 𝑄 as follows: 

𝑞 = 𝑄 𝑘, 𝑞" . (3) 
The function 𝑄  can be defined as an FD of the transit operation. In fact, the function 𝑄  can be 
expressed as follows: 

𝑄 𝑘, 𝑞" =

𝑙𝑘 − 𝑞"/𝜇"
𝑔$ + 𝑙/𝑣5

, if	  𝑘 < 𝑘∗ 𝑞" ,

−
𝑙𝛿

𝑙 − 𝛿 𝑔$ + 𝜏𝑙
𝑘 − 𝑘∗ 𝑞" + 𝑞∗ 𝑞" , if	  𝑘 ≥ 𝑘∗ 𝑞" ,

 (4) 

where 𝑞∗(𝑞")  and 𝑘∗(𝑞")  are train-flow and train-density, respectively, in a critical state with 
passenger-flow 𝑞"; they are represented as 

𝑞∗ 𝑞" =
1 − 𝑞"/𝜇"

𝑔$ + 𝛿/𝑣5 + 𝜏
, (5) 
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𝑘∗ 𝑞" = −
(𝑙 − 𝛿)/𝑣5 − 𝜏

(𝑔$ + 𝛿/𝑣5 + 𝜏)𝜇"𝑙
𝑞" +

𝑔$ + 𝑙/𝑣5
𝑔$ + 𝛿/𝑣5 + 𝜏 𝑙

. (6) 

Due to the space limitation, the derivation of Eq. (4) cannot be provided here. However, one can 
confirm that Eqs. (3) and (4) are consistent with Edie’s generalized definition of traffic states (Edie, 
1963) of the steady state transit operation, namely, 

𝑞 =
1
𝐻
, (7) 

𝑘 =
𝑞"𝐻/𝜇" + 𝑔$ + 𝑙/𝑣

𝑙𝐻
, (8) 

𝑣 =
𝑙

𝑞"𝐻/𝜇" + 𝑔$ + 𝑙/𝑣	  
, (9) 

which are derived by applying the Edie’s definition to the “minimum component of time–space 
diagram” of the steady state, which is a parallelogram-shaped area whose vertexes are time–space 
points of train 𝑚 departs station	  𝑖, train 𝑚 arrives station	  𝑖	   + 	  1, train 𝑚	   − 	  1 arrives station 𝑖	   + 	  1, 
and train 𝑚	   − 	  1 departs station 𝑖 in Fig. 1. 

2.4   Discussion 

2.4.1   Features of Fundamental Diagram 

The FD has following features which can be derived analytically from Eq. (4). Note that they can be 
easily found in the numerical example in Section 2.4.2. 
 
The FD can be interpreted as a function determines train-flow 𝑞 (and average-speed 𝑣 = 	  𝑞/𝑘) under 
given train-density 𝑘, passenger-flow 𝑞"  (i.e., demand), and the technical parameters of the transit 
system (i.e., 𝜇", 𝑔$, 𝑣5, 𝜏, 𝛿, 𝑙). Although the FD equation (4) looks complicated, it represents simple 
relation: namely, piecewise linear (i.e., triangular) relation between 𝑞 and 𝑘 if 𝑞" is fixed. 
 
As mentioned, a traffic state of transit system can be categorized into three regimes: free-flowing, 
critical, and congested as in standard traffic flow theory. It means that there is a critical train-density 
𝑘∗(𝑞")	  for given 𝑞" . Then train traffic is in the free-flowing regime (𝑣	   = 	   𝑣5	  , ℎ5 	  > 	  0) if 𝑘	   <
	  𝑘∗(𝑞"), in the critical regime (𝑣	   = 	   𝑣5	  , ℎ5 	  = 	  0) if 𝑘	   = 	   𝑘∗(𝑞"), or in the congested regime (𝑣	   <
	  𝑣5	  , ℎ5 	  = 	  0) otherwise. The congested regime can be considered as inefficient compared with the 
free-flowing regime; because the congested regime takes more time to transport the same amount 
passengers. The critical regime is the most efficient for travel time minimization, as well as 
passenger-crowding (i.e., number of passengers per a train, 𝑞"	  /𝑞) minimization. However, the critical 
regime requires more trains (i.e., higher train-density) than the free-flowing regime; therefore, it may 
not be the most efficient considering the operation cost. 
 
Even in the critical regime, the average speed 𝑣 is inversely proportional to passenger demand 𝑞". It 
means that travel time tends to increase if the passenger demand increases. In addition, size of the 
feasible area of (𝑞, 𝑘) narrows as 𝑞" increases. It means that operational flexibility of transit system 
declines as the passenger demand increased. 

2.4.2   Numerical Example 

A numerical example is shown in Fig. 2 where the parameter values used are: 𝑢 = 70 (km/h), 𝜏 =
1/70  (h), 𝛿 = 1  (km), 𝜇" = 36	  000  (pax/h), 𝑔$ = 10/3600  (h), 𝑙 = 3  (km). In the figure, the 
horizontal axis represents train-density 𝑘, whereas the vertical axis represents train-flow 𝑞, and the 
plot color represents passenger-flow 𝑞" . A slope of a straight line from a traffic state to the origin 
represents average speed 𝑣 of the state. 
 
The features discussed in Section 2.4.1 can be easily confirmed. For example, the figure can be read 
as follows. Suppose that the passenger demand per station is 𝑞" 	  = 	  16	  000 (pax/h) and have to be 
transported by the transit system. If number of trains in the system is corresponding to train-density 
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𝑘	   = 	  0.3 (veh/km), then the resulting train traffic is with train-flow 𝑞 ≃ 15	  (veh/h) and average speed 
𝑣 ≃ 	  50 (km/h). This is traffic state in the free-flowing regime. In addition, there is a congested state 
corresponding to a free-flowing state. The triangular	  𝑞– 𝑘 relation mentioned before is clearly shown 
in the figure; the “left side” of the triangle corresponds to the free-flowing regime, the “top vertex” is 
corresponding to the critical regime, and the “right side” corresponds to the congested regime. 

 
Figure 2. Numerical example of the FD. 

2.4.3   Relation to Actual Railway System 

Here we discuss relation between the proposed FD and actual transit system, as the proposed model 
and FD is based on simplified assumptions. The FD is fairly consistent with schedule-based train 
operation, although the FD does not consider a schedule explicitly. The FD can be considered as 
relation approximating an “average” operation schedule, if the schedule is designed to transport mass 
passenger demand (i.e.,	  𝑣 = 𝑣5	  if ℎ5 > 0 and ℎ5 = 0 if 𝑣 ≤ 𝑣5	  hold). The “average” means it do not 
distinguish between non-express and express trains—this can be considered as limitation to some 
extent; however, it may not be essential as many transit systems in central metropolitan area (e.g., 
metro) do not operates express trains. The FD is fairly consistent with operation with adaptive control 
strategies in the real world, such as scheduled and/or headway-based control (Wada et al., 2012). This 
is because that aim of such control is usually to eliminate bunching—in other words, such control 
makes the operation steady. The FD ignores the passenger-crowding effect, as the passenger boarding 
model (1) is linear. Therefore, a regime with excessively large 𝑞" and small 𝑞 may not be consistent 
with actual transit system. This is a limitation of this model. 
 

3.   DYNAMIC MODEL BASED ON FUNDAMENTAL DIAGRAM 

In this section, we formulate a model of urban rail transit operation where the demand (i.e., passenger-
flow) and supply (i.e., train-flow) change dynamically. The proposed model is based on an exit-flow 
model (Carey and McCartney, 2004) of which the proposed FD is employed as the exit-flow function. 
In other words, the transit system is considered as an input-output system as shown in Fig. 3. The exit-
flow modeling approach is often employed for area-wide traffic approximation and analysis using FD-
like concepts (e.g., Daganzo, 2007; Geroliminis and Levinson, 2009). 

 
Figure 3. Railway system as input-output system. 

3.1   Formulation 

Let 𝑎 𝑡  be in-flow of trains to the transit system, 𝑎" 𝑡  be in-flow of passengers, 𝑑 𝑡  be out-flow of 
trains from the transit system, and 𝑑" 𝑡  be out-flow of passengers, at time t, respectively. Without 
loss of generality, we assume that the initial time is 0, and therefore 𝑡	   ≥ 	  0  holds. Let 
𝐴 𝑡 , 𝐴" 𝑡 , 𝐷 𝑡 , and 	  𝐷" 𝑡  be cumulative numbers of 𝑎 𝑡 , 𝑎"(𝑡), 𝑑(𝑡) , and 𝑑"(𝑡),  respectively 
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(e.g.,	  𝐴(𝑡) 	  = 𝑎(𝑠)d𝑠X
Y 	  ). Let 𝑇𝑇	  (𝑡) be the travel time of a train (and a passenger) who entered the 

system at time 𝑡, and its initial value	  𝑇𝑇(0)	  be given as free-flow travel time under 𝑞	  = 	  𝑎(0), 𝑞" 	  =
	  𝑎"(0). In order to simplify the formulation, the trip length of the passengers is assumed to be equal to 
that of trains. It means that 𝑇𝑇 is travel time of both of the trains and passengers. Note that, in reality, 
the 𝑎(·) and 𝑎"(·) will be determined by transit operation plan and passenger departure time choice, 
respectively. The 𝑑(·), 𝑑"(·), and 𝑇𝑇(·) are endogenously determined by the proposed model. 
 
The train traffic can be calculated as follows. First, in accordance with the manner of the exit-flow 
modeling, the exit-flow, 𝑑(𝑡), is assumed as 𝑑 = 𝑄 𝑘 𝑡 , 𝑎" 𝑡 , where the FD function, 𝑄(·), is 
considered as an exit-flow function. It means that the dynamics of the transit system is modeled as 

d𝑘(𝑡)
d𝑡

= 𝑎 𝑡 − 𝑄 𝑘 𝑡 − 𝑎" 𝑡 , (10) 

by taking a conservation of trains into account. Note that, the average train-density 𝑘(𝑡) is, by the 
definition, derived as 

𝑘 𝑡 =
𝐴 𝑡 − 𝐷(𝑡)

𝐿
, (11) 

where 𝐿 can be interpreted as trip length of trains (e.g., length of the transit route). Then, 𝑑(𝑡) and 
therefore 𝐷(𝑡) can be sequentially calculated using 𝑇𝑇(0), 𝑎(𝑡), 𝑎"(𝑡), and Eqs. (10) and (11). 
 
The passenger traffic can be calculated as follows. By the definition of travel time of trains, 𝐴 𝑡 =
𝐷 𝑡 + 𝑇𝑇 𝑡  holds. Therefore, since 𝐴 and 𝐷 are already obtained, the travel time 𝑇𝑇(𝑡) such that 
𝐴 𝑡 = 𝐷 𝑡 + 𝑇𝑇 𝑡  holds can be calculated. Then, 𝐷"(𝑡) and therefore 𝑑"(𝑡) can be calculated by 
the definition of travel time of passengers, which is 𝑇𝑇(𝑡)	  as well: 𝐴" 𝑡 = 𝐷" 𝑡 + 𝑇𝑇 𝑡 . 

3.2   Discussion 

The proposed macroscopic model calculate train out-flow 𝑑(𝑡) and passenger out-flow	  𝑑"(𝑡), based 
on the FD function	  𝑄(·) and initial and boundary conditions 𝑎(𝑡), 𝑎"(𝑡), and 𝑇𝑇(0). Therefore, it can 
derive social cost and benefit of a transit system. 
 
The notable feature of the model is its high tractability; as it is based on an exit-flow model. Therefore, 
we expect that management strategies (e.g., dynamic pricing in morning commute) in transit systems 
can be analyzed by using the proposed model. 
 
The proposed model would approximate macroscopic behavior of a transit operation well if one with 
high-frequency operation (i.e., small headway time), densely spaced stations, and spatially 
homogeneous passenger demand are considered. A typical example is a subway in central 
metropolitan area. This is because an exit-flow model can be reasonable if change of in-flow is 
moderate compared with the relaxation time of the dynamical system. Note that, such transit system is 
worth investigating; because congestion and delay are often found during rush hours due to the 
excessive demand in such transit systems. 
 

4.   VALIDATION 

In this section, we validate quantitative behavior of the macroscopic model by comparing its results 
with that of the microscopic model (i.e., Eqs. (1) and (2)) with the same parameter values. The 
validity of the macroscopic model can be investigated by comparing the output with that of 
microscopic models. Specifically, computed 𝐷	  where the same 𝐴 and 𝐴"	  are given is to be compared. 

4.1   Simulation Setting 

Following situation is considered. The parameters of the transit operation are set as the same to those 
of Section 2.4.2, and are shared by the both of microscopic and macroscopic models. Railroad is 
considered as a one-way corridor. The stations are equally spaced with interval 𝑙, and the total number 
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is 10. Trains enter the railroad with flow 𝑎(𝑡); in the microscopic model, a discrete train enters the 
railroad from the upstream boundary station if integer part of 𝐴(𝑡) is incremented. In the microscopic 
model, the trains leave the railroad from the downstream boundary station without restriction other 
than the passenger boarding. Passengers arrive each station with flow 𝑎"(𝑡). The simulation duration 
is 4 hours. 
 
The microscopic model without any control is asymptotically unstable as proven by Wada et al. 
(2012); it means that dynamically changing demand and supply shall cause train bunching, making 
the experiment unrealistic and useless. Therefore, a control strategy such that a stable equilibrium of 
its dynamics is identical to the underlying steady state is implemented to the microscopic model. It is 
a headway-based control using two control measures: dwelling time extension and free-flow speed 
increase (up to 80 km/h in this experiment). The implemented control can be considered as realistic; 
as similar operation is executed in practice. See Wada et al. (2012) for the details. 
 
The 𝑎(𝑡) and 𝑎"(𝑡) are exogenously given to mimic morning commute situation, namely, so-called S-
shaped 𝐴(𝑡) and 𝐴"(𝑡) are considered. The minimum and maximum values are: 𝑎 0 = 𝑎(4) 	  = 	  10 
(veh/h), 𝑎(2) 	  = 	  15  (veh/h), 	  𝑎" 0 = 𝑎" 4 = 	  0.1𝜇"	   (pax/h), and 𝑎"(2) 	  = 	  0.5𝜇"  (pax/h). The 
values for 𝑡 ∈ 0,2 , (2,4) are given by linear interpolation. It means that the peak time is 𝑡	   = 	  2 (h). 
They are shared by the both of microscopic and macroscopic models. 

4.2   Results 

A result of the microscopic model is shown in Fig. 4 as a time–space diagram. The colored curves 
represent trajectories of each train that travels upward direction while stopping at every station. 
Around the peak time period (𝑡	   = 	  2), train congestion is observed; namely, some of the trains stop 
occasionally between stations in order to keep the safety interval. The congestion is due to the 
excessive passenger demand; therefore, a situation during rush hour is reproduced well. 

 
Figure 4. Result of the microscopic model. 

A result of the macroscopic model is shown in Fig. 5 as cumulative plots. Fig. 5a shows the 
cumulative curves of trains, where the blue curve represents the in-flow 𝐴 and the red one represents 
the out-flow 𝐷. Fig. 5b shows those of passengers in the same manner. Congestion and delay can be 
found around the peak period (it is more remarkable in the passenger traffic). For example, during the 
peak time period, 	  𝑑"(𝑡)  is smaller than 𝑎"(𝑡)  and 𝑎"(𝑡’)  ( 𝑡	   = 	  𝑡’ + 𝑇𝑇(𝑡’) ). It means that the 
throughput of the transit system is reduced due to the passenger demand. 
 
Comparison between the macroscopic and microscopic models is shown in Fig. 6 in terms of the 
cumulative plot of train. In the figure, the solid curves represent the results of the macroscopic model; 
therefore, they are identical to Fig. 5b. The dots represent that of the microscopic model. According to 
the figure, the macroscopic model reproduced results of the microscopic one fairly precisely. For 
example, congestion and delay during the peak time period were captured well. 
 

5.   CONCLUSION 

In this paper, the following three models of urban rail transit system are analyzed: 
�   Microscopic model: A model describing trajectory of individual train and passengers based on 

the Newell’s car-following model and passenger boarding model. It can be solved by simulation. 
�   Fundamental diagram: Relation among train-flow, train-density, and passenger-flow of the 

microscopic model under a steady state. It is a closed-form equation. 
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�   Macroscopic model: A model describing train and passenger traffic using an exit-flow model 
whose exit-flow function is the FD. It can be solved by simple simulation. 

The FD and macroscopic model are the original works developed by this study, while the microscopic 
model has been proposed by Wada et al. (2012). The microscopic model can be considered as a lower 
order approximation of actual transit system. The FD represents the exact relation among steady state 
traffic variables in the microscopic model. The macroscopic model can be considered as an FD-based 
macroscopic approximation of area-wide behavior of the microscopic model. Qualitative features of 
the FD agree with actual phenomena to some extent. In addition, according to the results of the 
numerical experiment, the macroscopic model can reproduce behavior of the microscopic model.  
 
The proposed FD and macroscopic model have simplicity, high mathematical tractability, and good 
approximation accuracy. Therefore, we expect that they will contribute for obtaining policy 
implications on management strategies of rail transit systems (e.g., pricing and control for morning 
commute problems) by applying the models to dynamic traffic assignment problems. 

  
Figure 5. Result of the microscopic model. Figure 6. Comparison 

between the macroscopic and 
microscopic models 
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