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During cell division, mitotic spindles are assembled by micro-
tubule-based motor proteins'’. The bipolar organization of ‘N ature 435 ’ 114-118 (2005)
spindles is essential for proper segregation of chromosomes,

and reqf.li_res plus-end—di'rectfed hon:lotetrame'ric motor proteins ‘ Nature G) 7 7 X I\ 5 7 I\ G) r J_iFll_J J [ j:
of the widely conserved kinesin-5 (BimC) family’. Hypotheses for » o —2

bipolar spindle formation include the ‘push—pull mitotic muscle’ jj 9—_ jj 9—_ ‘ ~ I;{ 35 2 —C L \ é

model, in which kinesin-5 and opposing motor proteins act

between overlapping microtubules>**. However, the precise ‘ 35 ‘a:: [ j: EJE &) "C & J: 5

roles of kinesin-5 during this process are unknown. Here we
show that the vertebrate kinesin-5 Eg5 drives the sliding of

microtubules depending on their relative orientation. We '>:< HE q:% 7:-5: O) 'C:b 75\ B fd: l/ \ -ts L/ J::) o
found in controlled in vitro assays that Eg5 has the remarkable %_ *L—C‘:L \ L \ -E:-g— 5 1% :E) *) 75\ L) 35 _u_ AJ .

capability of simultaneously moving at ~20nms~" towards
the plus-ends of each of the two microtubules it crosslinks. For
anti-parallel microtubules, this results in relative sliding at
~40nms~ ', comparable to spindle pole separation rates
in vivo®. Furthermore, we found that Eg5 can tether microtubule
plus-ends, suggesting an additional microtubule-binding mode
for Eg5. Our results demonstrate how members of the kinesin-5
family are likely to function in mitosis, pushing apart interpolar
microtubules as well as recruiting microtubules into bundles that
are subsequently polarized by relative sliding.




SR A TCHBETIDHLMNS

el i ﬁ'im*&% el »im” b 345 T Bt o

Wﬁfﬁ% Wa IR S = Y T S L wwf&s,hr .

g e e s W B WM"*’: O
A fa,.wyar*;ﬁ*wﬁ e Gl el e e 0 . P
%i& . L e e w%%r%rﬁ*
wﬁ# s Femachee £ m*@wm m;; an e
«r*%u b T S w&% b . e (i a.i.“'
AT ey e T N
sl o ol B v b l!,'%ggﬁﬁmﬁw EEE S, V‘*%g, iﬂ"&e .y
i il e el Bt F -aeg:‘ e nig Tore i iuing i
m,.?"*:‘.'“ﬁ“ w¢% :ﬁ% wﬁwﬂa@ m;’ *"’ﬁm htwm -qar e ﬁum %

..",-.E#? % -&ﬁ*ﬂw«% it mww H ,ﬁmt* . w#«
tha Pk wp: o vigls @’W% 0 Aol .miw
“’*M?tﬁ CURR R T e *&;—" ity —r*gmﬂs ghﬁgﬁ; £ 34
< afrmae ¢ fx&rqmw*“t P G amy ‘t}“‘ﬁ««*% e Dagiry
o 5", P et ¢ i T G 0 i Bowbe g ke
W s, R g v i SO i v W wm&%‘r‘&'ﬁ ,ara, %w&r
i mw o B Mmoo Yoo ol i Hhed ol

m*ﬁ?*n m # -iwiﬂﬁﬁﬁ*‘ﬁw?*m ‘-’E’M ’%‘i"‘“‘f%"’s g
wﬁ Sk 1&;*% mna’"-.- ﬁ *&%‘L.-",".;m%ﬁm S T

OEYAO%HNTTHI-
O fIMENTNAIOMNYFET M ?
OLE BADMIBSLELN




nJLit*(T't’*ﬁ

[EHM5

o ks B el mnm 325 ket B ma e

f“ﬁm et W’ﬁ FIOOr T S = T ; T Rl

Ay B W et Sew B WW"""- ¥ R R %,
e TRy R &ﬁ it %mﬁ“ Lt SR S REEE SEUR

ii&*ﬁ&*“#ﬁwﬁﬁ it"’*% S m%%i“xﬁr w’?’* "'*‘1‘“?*‘
oo mﬁﬂ;g&mn%% a ek g ik o B R
*&&* g ﬁﬁiﬂmm T Nﬁw b R m&r N
o H W #Jﬁ*mﬂ%wu i gl i 5 - M REE R

Fuly o ey B v b e&,”% ;ffii'w n}“g'w; wwgﬁ iiﬂ"& o
i bl M wir M,«%;mr*?% g mm#&#ﬁ
--r#_w‘#* ?*im ‘*

Him Ygiar i ’*H awsar,ﬁﬂ -ﬂf'w *“b&‘m - ?ﬁv#‘

xmwg % «#mmw S ﬂtw asf. u
thy s W o sipdost e P R Al
T fe i ik v i e, B Tt
it R SR R
L T e A
#f{# M#\W#’ %-\! %W%&*W# °
N mﬁm o i Foa a2 N

« 1-297H:

mrly e TG B s Baga b mw o
sihpeh s S gD By #"‘*‘t‘-‘r.x‘f? i St
5 oo s Bolnibi € L4 ngta e Rl

y AP

PEDA+A-ERBR
o 3-41T7H :fAIARIELZDOM?
51T H B AR EREER B
61TH : COEmXIFAIZFEE LN ?
e 7917H: EEHERDEREA
101TH-: EDLVOTRELH LM ?

O EYAOFENTTHI-
O fIMENTNAIOMNYFET M ?
& BAADLMBLEL

& LH L. Nature abstractf=h 5.,
BEXFEISTIHOMS

~




Nature D7 7AKNZ 27 NDEV A

1 ~2XT, BXNRBRNTE. ETORTHD AL During cell division, mitotic splndles are assembled by

MEENBERTETELOICEKHTS. microtubule-based motor proteins™2, The bipolar organization|
of spindles is essential for proper segregation of « chromosomes,

_ . . _ _d; . .
2 ~3%T. BEOLYVEALESSE. and reql-ures plus-end dll'.ecte.d hom(.)tetramer.lc 3plotor protelnsl
. | 354t s . f the widely conserved kinesin-5 (BimC) family>. Hypotheses

RENFHFORFENERTTELS(CE:T D, for bipolar spindle formation include the 'push—pull mitotic
muscle' model, in which kinesin-5 and opposmg motor proteinﬂ

1 XT. COBRTOMEATRELTVS act between overlapping microtubules™*> J However, the

i L recise roles of kinesin-5 during this process are unknown.

— B3 Rz BARE (O X B, Here we show that the vertebrate kinesin-5 Eg5 drives the|
sliding of microtubules depending on their relative orientation.

1 %XC. SERERELAEYTS. We found in controlled in vitro assays that Eg5 has the .

remarkable capability of simultaneously moving at ~20 nm s

towards the plus-ends of each of the two microtubules it

2~ 3T, SEACHCHSZEZLFER%E =P crosslinks. For anti-parallel mlcrotubules, this results in

MERIFEDLS ICEZISNTVEAENSTEE relative sliding at ~40 nm s, comparable to spindle pole
e separation rates in vivo®. Furthermore, we found that Eg5 can

EREBULEHSHATD, tether microtubule plus-ends, suggesting an additional

microtubule-binding mode for Eg5. Our results demonstrate

. how members of the kinesin-5 family are likely to function in
1 ~2XT, - . . : '
. ForkIZE [~ b | SAdS 0 mitosis, pushing apart interpolar microtubules as well as
faRel—REENE(CEELRAD recruiting microtubules into bundles that are subsequently

polarized by relative sliding. We anticipate our assay to be a
starting point for more sophisticated in vitrro models of mitotic
spindles. For example, the individual and combined action of
multiple mitotic motors could be tested, including minus-end-
directed motors opposing EgS motility. Furthermore, EgS
inhibition is a major target of anti-cancer drug development,
and a well-defined and quantitative assay for motor function
will be relevant for such developments.
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1~2XT, EFNEEBNTZE. ETOHHFED

During cell division, mitotic spmdles are assembled by{

REENERBTESRLSICEHT S,

_I—.

2~3XT, HRODLVFHHLESR
BESEFEORMFENERTESRLS lcaﬂﬁ?%o

1XT, CORIDARDHRELTNS
—RRBY I Bz BRRE (L R B,

microtubule-based motor proteins2 \ Tl“he bipolar orgamzatlon]

f spindles is essential for proper segregation of chrumosnmes,l
Iand requires plus-end-directed homotetrameric motor proteins|
of the widely conserved kinesin-5 (BimC) family2. _Hypothes&ﬁ
for bipolar spindle formation include the 'push—pull mitotic
mcle model, in which kinesin-5 and opposing motor proteinsi
ct between overlapping mlcrotubulesl‘i‘é.l tHowever, theJ
recise roles of kinesin-5 during this process are unknuwn.l
Here we show that the vertebrate kinesin-5 Eg5 drives thgl
sliding of microtubules depending on their relative orientation.l
We found in controlled in vitro assays that Eg5 has the

1 XT. FBLGEREZENTS,

2~3XT, SEBRSHCLE>TEEELBRE, —P
EEREFEDLSCHFEZONTVW M EWNSZEE
ERLBULHSHATS,

1~2XT.
RS —ALTARICERELAD,

_

2~ 3 XT, 2TOTHFORFEENEZ(CE —
RTEAHLI1. JC"JF'EEETC&E“WHEMTJ“%L
ENBB (FTARNZIMMCZSLEEENE

FNBZET. ZORMXDEEADNASIET
LIREEDHINTBI5E). COHRET T X
VNI mAT 300 FEBREEELED

remarkable capability of simultaneously moving at ~20 nm s™
towards the plus-ends of each of the two microtubules it
crosslinks. For anti-parallel microtubules, this results in
relative sliding at ~40 nm s, comparable to spindle pole
separation rates in vivo®. Furthermore, we found that Eg5 can
tether microtubule plus-ends, suggesting an additional
microtubule-binding mode for EgS. Our results demonstrate
how members of the kinesin-5 family are likely to function in
mitosis, pushing apart interpolar microtubules as well as
recruiting microtubules into bundles that are subsequently
polarized by relative sliding. We anticipate our assay to be a
starting point for more sophisticated in vitro models of mitotic
spindles. For example, the individual and combined action of
multiple mitotic motors could be tested, including minus-end-
directed motors opposing Eg5 motility. Furthermore, Eg5
inhibition is a major target of anti-cancer drug development,
and a well-defined and quantitative assay for motor function
will be relevant for such developments.

TJ+—IvbhohhblE

va. I ArEY Y 2 (TG, —fi&mE 1)
Scell division (MER 4> Z1)
bipolar mitotic spindles ( B 4% & §% 1% )

va. I AREY Y ? (FRL . &Y A
—kinesin-5 family

Q. AT A REEREE ?

—the role of kinesin-5 during this process
Q. IINCDRmXDEER ?

—vertebrate klnesm 5 drives the sliding of

microtubules (fi/hNE ) based on their relative
orientation

a. [N ELL O ? (fE. EMRRET)

—function of kinesin-5 family in mitosis

V. A ELLD ? (B

—more sophisticated model of mitotic spindles
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processes underlying their mechanical and dynamical features’. The diffusion process — . ~—
followed by a passive tracer in prototypical active media, such as suspensions of
active colloids or swimming microorga nisms’, differs considera bly from Brownian j:a (-}- é EE ¢ * E 0)
motion, as revealed by a greatly enhanced diffusion coefficient™ ™ and non-Gaussian = 3
statistics of the tracer displacements®*". Although these characteristic features have A K —C -d—

beenextensively observed experimentally, there is so far no comprehensive theory
explaining how they emerge from the microscopic dynamics of the system. Here we
develop a theoretical framework to model the hydrodynamic interactions between
the tracer and the active swimmers, which shows that the tracer follows anon-
Markovian coloured Poisson process that accounts for all empirical observations. The
theory predicts along-lived Lévy flight regime" of the loopy tracer motion with a non-
monotoenic crossover between two different power-law exponents. The duration of
this regime can be tuned by the swimmer density, suggesting that the optimal
foraging strategy of swimming microorganisms might depend crucially on their
density in order to exploit the Lévy flights of nutrients™. Our framework can be
applied to address important theoretical questions, such as the thermodynamics of
active systems", and practical ones, such as the interaction of swimming

microorganisms with nutrients and other small particles” (for example, degraded
plastic) and the design of artificial nanoscale machines®,
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Derivation of the Boltzmann Equation for Financial Brownian
Motion: Direct Observation of the Collective Motion of High- CINBEDEHITT

Frequency Traders (=_=HIJ ﬂﬂiﬂ%ﬂ’cﬂ’b\)

Kiyoshi Kanazawa, Takumi Sueshige, Hideki Takayasu, and Misako Takayasu = 0 =O SO
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ABSTRACT - (UMEOFEAREE

A microscopic model is established for financial Brownian motion from the direct observation of the ﬁ Fﬂﬁ ‘ “$H“ )\ j— %) )
dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical ‘ q:% EE $ g ﬁ
framework parallel to molecular kKinetic theory is developed for the systematic description of the P R L 0) F RICs

financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of
traders’ trend-following behavior by tracking the trajectories of all individuals, which quantifies the
collective motion of HFTs but has not been captured in conventional order-book models. We next
introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling
molecular kKinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic
dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon higrarchy. Our model is the first microscopic
model that has been directly validated through data analysis of the microscopic dynamics, exhibiting
quantitative agreements with mesoscopic and macroscopic empirical results.
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A microscopic model is established for financial Brownian motion from the direct observation of the
dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical
framework parallel to molecular kinetic theory is developed for the systematic description of the
financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of
traders’ trend-following behavior by tracking the trajectories of all individuals, which guantifies the
collective motion of HFTS but has not been captured in conventional order-book models. We next
introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling
molecular kKinetic theory: Bolizmann-like and Langevin-like equations are derived from the microscopic
dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic
model that has been directly validated through data analysis of the microscopic dynamics, exhibiting
quantitative agreements with mesoscopic and macroscopic empirical results.
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traders’ trend-following behavior by tracking the trajectories of all individuals, which quantifies the
collective motion of HFTs but has not been captured in conventional order-book models. We next
introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling
molecular kKinetic theory: Bolizmann-like and Langevin-like equations are derived from the microscopic
dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic
model that has been directly validated through data analysis of the microscopic dynamics, exhibiting
quantitative agreements with mesoscopic and macroscopic empirical results.
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molecular Kinetic theory: Bolizmann-like and Langevin-like equations are derived from the microscopic
dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic
model that has been directly validated through data analysis of the microscopic dynamics, exhibiting
quantitative agreements with mesoscopic and macroscopic empirical results.
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The Hawkes self-excited point process provides an efficient representation of the bursty intermittent
dynamics of many physical, biological, geoclogical, and economic systems. By expressing the
probability for the next event per unit time (called “intensity™), say of an earthquake, as a sum over all
past events of (possibly) long-memory kernels, the Hawkes model is non-Markovian. By mapping the
Hawkes model onto stochastic partial differential equations that are Markovian, we develop a field
theoretical approach in terms of probability density functionals. Solving the steady-state equations, we
predict a power law scaling of the probability density function of the intensities close to the critical point
n = 1 of the Hawkes process, with a nonuniversal exponent, function of the background intensity vy of
the Hawkes intensity, the average timescale of the memory kernel and the branching ratio n. Cur
theoretical predictions are confirmed by numerical simulations.
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The Hawkes self-excited point process provides an efficient representation of the bursty intermittent
dynamics of many physical, biological, geological, and economic systems. By expressing the
probability for the next event per unit time (called “intensity”), say of an earthquake, as a sum over all
past events of (possibly) long-memory kermnels, the Hawkes model is non-Markovian. By mapping the
Hawkes model onto stochastic partial differential equations that are Markovian, we develop a field
theoretical approach in terms of probability density functionals. Solving the steady-state equations, we
predict a power law scaling of the probability density function of the intensities close to the critical point
n = 1 of the Hawkes process, with a nonuniversal exponent, function of the background intensity vy of
the Hawkes intensity, the average timescale of the memory kernel and the branching ratio n. Our
theoretical predictions are confirmed by numerical simulations.
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probability for the next event per unit time (called “intensity”), say of an earthquake, as a sum over all
past events of (possibly) long-memory kernels, the Hawkes model is non-Markovian. By mapping the
Hawkes model onto stochastic partial differential equations that are Markovian, we develop a field
theoretical approach in terms of probability density functionals. Solving the steady-state equations, we
predict a power law scaling of the probability density function of the intensities close to the critical point
n = 1 of the Hawkes process, with a nonuniversal exponent, function of the background intensity vy of
the Hawkes intensity, the average timescale of the memory kernel and the branching ratio n. Our
theoretical predictions are confirmed by numerical simulations.
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theoretical approach in terms of probability density functionals. Solving the steady-state equations, we
predict a power law scaling of the probability density function of the intensities close to the critical point
n = 1 of the Hawkes process, with a nonuniversal exponent, function of the background intensity vy of
the Hawkes intensity, the average timescale of the memory kernel and the branching ratio n. Our
theoretical predictions are confirmed by numerical simulations.
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