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Applications I* 

A b s t r a c t .  This paper provides a logic framework for investigations of game theoretical 
problems. We adopt an infinitary extension of classical predicate logic as the base logic of 
the framework. The reason for an infinitary extension is to express the common knowledge 
concept explicitly. Depending upon the choice of axioms on the knowledge operators, 
there is a hierarchy of logics. The limit case is an infinitary predicate extension of modal 
propositional logic KD~, and is of special interest in applications. In Part  I, we develop 
the basic framework, and show some applications: an epistemic axiomatization of Nash 
equilibrium and formal undecidability on the playability of a game. To show the formal 
undecidability, we use a term existence theorem, which will be proved in Part II. 
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1. Introduct ion 

In the early stage of their literatures, game theory and mathematical logic 
had some common contributors, e.g., Zermelo, von Neumann and McKinsey, 
and then these fields had been developed with almost no interactions. Re- 
cently, the recognition of a possible relationship in aims and objects between 
them has been reemerging. The relationship may be summarized as the view 
that game theory is a theory of human behavior in social situations, while 
mathematical logic is a theory of mathematical practices by human beings. 
When we emphasize rational behavior in game theory, the relationship is 
even closer. In this paper, we take this view and develop a logic framework 
for investigations of game theory. 

The primary purpose of the new framework is to understand the players' 
rational decision makings and their interactions in a game situation. In a 
game situation, each rational player thinks about his strategy choice, and 
there he may need to know and think about the other players' strategy 
choices, too, since their decisions affect those players interactively. Of course, 
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some logical and introspective abilities are required for such thinking. Here 
epistemic aspects such as knowledge, logical and introspective abilities are 
entangled in the players' decision makings. We would like to develop our 
framework to encompass these features or some important  part  of them. 

With respect to the feature of logical reasoning, we can find some liter- 
ature called "epistemic logic" initiated by Hintikka [8]. Recently, epistemic 
logic is applied to the considerations of some game theoretical problems (cf., 
Bacharach [3] for a recent bibliography). Nevertheless, epistemic logic has 
been developed primarily in propositional logic. In game theory, the use 
of the real number system is standard, for example, the classical existence 
theorem of a Nash equilibrium in mixed strategies is proved in the real num- 
ber system (von Neumann [23, 24] and Nash [20]). Hence we need to extend 
epistemic logic to predicate logic so as to formulate some real number theory. 

Another important  feature is the common knowledge concept. For the 
decision making of each player in a game situation, he may need to know the 
other players' knowledge and thinking about the situation. These knowledge 
and thinking may have a nested structure, e.g., he knows that  the others 
know that  he knows the game situation, and so on. This nested structure 

m a y  form an infinite hierarchy, which is the problem of common knowledge. 
Common knowledge on the basic description of a game as well as on the 
logical and introspective abilities of the players may be required. 

In the literature of epistemic logic, "fixed point logic" is developed to 
incorporate the common knowledge concept into finitary epistemic logic (cf., 
Halpern-Moses [6] and Lismont-Mongin [16]). There common knowledge is 
treated as a part  of logic. Since common knowledge is an infinitary concept, 
we choose a framework in which infinitary conjunctions and disjunctions are 
allowed to express common knowledge explicitly as a logical formula, which 
enables us to treat common knowledge as an object of our logic instead of a 
part  of our logic. 1 By choosing this research strategy, we can separate the 
development of the logical framework from its application to a particular 
game theoretical problem. 

As a consequence of the above desiderata, the base logic, GLo, of our 
framework is an infinitary extension of classical predicate logic. In this base 
logic, we formulate the logical abilities of the players as well as the knowledge 
of a game situation. The base logic may be regarded as the description of 
the logical ability of the outside investigator. We give essentially the same 
logical ability to each player, which is described inside the base logic. This 

1Kaneko-Nagashima [12] argued in a proof theoretic manner that in a finitary logic 
without adding any inference rule on the common knowledge operator, it would be im- 
possible to define the common knowledge concept. Segerberg [22] reached also a similar 
conclusion in a semantical manner. 
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is logic GLp. 
The next step is to give the introspective ability to each player. We 

assume that  each knows what he knows, described by Ki(A) D KiK~(A), 
and also that  he knows his logical and introspective abilities. By these 
assumptions, we obtain logic GL1. When there is only one player, logic GL1 
coincides with the infinitary predicate extension of modal  propositional logic 
KD4. 

When there are at least two players, logic GL1 is much weaker than the 
extension of modal KD4. Here the knowledge of players about the other 
players' logical and introspective abilities are necessary to introduce. We 
have a hierarchy of logics 

GLo, GL1, GL2, ..., ; and the limit GL~ 

by assuming that  player il knows that  player i2 knows ... player im knows 
the logical and introspective abilities of the players to various degrees from 
m = 0 to w. When there are at least two players, the limit GLw coincides 
with the extension of modal KD4. For this equivalence, we need the common 
knowledge of the logical and introspective abilities of the players. Sections 
2-4 are devoted for the development of these logics. 

In Sections 5 and 6, we show possible applications of our framework to 
game theory. The first is an epistemic axiomatization of the Nash equilibrium 
concept. The axiomatization includes one epistemic aspect, which leads to 
the common knowledge of Nash equilibrium, C(Nashg(~a)), instead of Nash 
equilibrium itself. This axiomatization is formulated in logic GL~ within the 
ordered field language. The additional common knowledge operator requires 
us to reconsider the playability of a game and the existence problem of a 
Nash equilibrium, which is the subject of Section 6. 

The existence theorem of a Nash equilibrium by yon Neumann [23], 
[24] and Nash [20] holds in the real closed field theory. It follows from 
this that  the common knowledge of the existence of a Nash equilibrium, 
C(3-~Nashg(-'s is derived from the common knowledge of the real closed 
field axioms. However, the axiomatization of Section 5 states that  
the existence quantifier must be outside the scope of the common knowl- 
edge, 3~xC(Nashg(-~)), in order to have the playability of a game g, which 

is deductively stronger than C(3~xNashg(-~)). In Section 6, we prove 
that  the playability is formally undecidable for some three-person game 
g with a unique Nash equilibrium, that  is, neither 3~xC(Nashg(--~)) nor 

~B~C(Nashg(~)) is provable from the common knowledge of the real 
closed field axioms in logic GLz. Although this undecidability result is 
dependent upon the choice of a language and can be resolved by extending 
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the language, it is the point that the players cannot realize the necessity of 
such an extension, since they know neither positive nor negative statement. 

In Part II, we will develop sequent calculi of our logics in the Genzten 
style, and prove the cut-elimination theorem for them. The key theorem for 
the formal undecidability result of Section 6 of Part I will be proved, using 
the cut-elimination theorem. 

2. Log i c s  GLo, GLp a n d  GL1 

2.1 Base logic GLo 

We adopt an infinitary language, based on the following list of symbols: 

Free variables: a0, al,  ...; Bound variables: x0, Xl, ...; 

Functions: fo, fl ,  ...; Predicates: Po, P1, ...; 
Knowledge operators: K1, ..., Kn; 

Logical connectives: -, (not), D (implies), A (and), V (or), V (for all), 
3 (exists), where A and V are allowed to be applied to infinitely 
many formulae; 

Parentheses: ( ,  ). 

The numbers of functions and predicates are arbitrary, except that there 
is at least one predicate. A 0-ary function is an individual constant, and 
a 0-ary predicate is a propositional variable. By the expression Ki(A), we 
mean that player i knows that A is true. 

The space of terms is defined by the standard finitary induction: (i) each 
free variable is a term; and (ii) if fk is an ~-ary function and if tl,  ...,t~ are 
terms, then fk(tl, ..., t~) is a term. 

Let P0 be the set of all formulae generated by the standard finitary in- 
ductive definition with respect to -~, D, V, 3 and K1, ..., Kn from the atomic 
formulae. Suppose that T't is already defined (t = 0, 1, ...). We call a non- 
empty countable subset (F of Pt an allowable set iff it contains a finite number 
of free variables. 2 For an allowable set ~I,, the expressions (A~F) and (V~) are 
considered here. From the union Pt t3 {(A~), (V~F) : �9 is an allowable set in 
~Pt}, we obtain the space Pt+l of formulae by the standard finitary inductive 
definition with respect to --, D,V, 3 and K1, ..., Kn. We denote [.Jt<~ Pt by 
7'~. 3,4 An expression in P~ is called a formula. We abbreviate A{A, B} and 
v{A,B} as A A B  and A V B. 

2This requirement will be used in Par t  II. 
3Note that  A(I, and V~F may not be in P~ for some countable subsets ~I, of P~. For our 

purpose, however, this does not mat te r  and the space P~ is large enough. 
4This space is already uncountable. Some smaller, countable, space of formulae suffices 
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The pr imary reason for the infinitary language is to express common 
knowledge explicitly as a conjunctive formula. The common knowledge 
of a formula A is defined as follows: For any m > 0, we denote the set 

{KilKi2...Ki.~ : each Kit is one of K1, ...,Kn and i t ~ it+l for all t = 
1, ..., m -  1} by K(m). 5 When  m = 0, KilKi2...Ki,~ is interpreted as the null 
symbol. We define the common knowledge of A by 

A { K ( A ) : K e  U K(m)}, 
m<~w 

which we denote by C(A). I f  A is in P~, then C(_4) is in P=+I. Hence the 
space ?~w is closed with respect to the operation C(.). 

Base logic GLo is defined by the following seven axiom schemata and five 
inference rules: For any formulae A, B, C, allowable set { ,  and term t, 

(L1): 

(L2): 

(L3): 

(n4): 

(L5): 

(L6): 

(L7): 

A (B A); 

(A D (B D C)) D ((A D B) D (A D C)); 

(~A D -~B) D ((-~A D B) D A); 

Ar D A, where A E ~; 

A D V(I), where A E (I); 

VxA(x) D A(t); 

A(t) D 3xg(x); 

A D B  A 
B (MP) 

{A D B:  B e ~} (A-Rule) {A D B:  A e e)} (V-Rule) 
A D A~ V~ D B 

A D B(a) (V-Rule) 
A D VxB(x) 

A(a) D B 
~xA(x) D B 

(a-Rule), 

where the free variable a must not occur in A D VxB(x) of (V-Rule) and 
5xA(x) D B of (3-Rule). 

Let (I) be an empty  or allowable set and A a formula. A proof of A from 
is a countable tree with the following properties: (i) every pa th  from the 

for our purpose. For example, a countable and constructive space of formulae is provided 
in Kaneko-Nagashima [11]. We adopt the above space for presentational simplicity. 

5The requirement it r it+l for all t = 1, ..., m - 1 will be used in Part II. 
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root  is finite; (ii) a formula is associated wi th  each node, and the formula 
associated wi th  each leaf is an instance of (L1) - (LT) or a formula in r  (iii) 
adjoining nodes together  wi th  their  associated formulae form an instance of 
the above inferences; and  (iv) all formulae occuring in P are in Pt  for some 
t < w. 6 For any subset P of :Pw, a formula A is provable from F, denoted by 
P ~-0 A, iff there is an empty  or allowable subset r of F and a proof  of A 
from ~. 

Logic GLo is an infinitary extension of finitary classical predicate  logic. 
Hence we can freely use provable finitary formulae in classical logic. In fact, 
it is sound and complete  wi th  respect to the s t andard  in terpre ta t ion  wi th  
infinitary conjunct ions and disjunctions.  Tha t  is, all valid formulae in this 
sense are provable, and  vice versa. The  following are some examples of 
provable formulae: 

(1): ~ - o A V B - = ( - " A D B ) ;  

(2): ~-0 A A B - -~(A D --B); 

(3): k o ( A D ( B D C ) ) - - ( A A B D C ) ;  

(4): F-0 -1 V e2 -- A{-,A : A E r  where r is an allowable set. 

Here A _~ B denotes (A D B) A (B D A). We will not refer to those basic 
results in the following sections. We just  ment ion  the deduct ion  theorem 
for the purpose  of comparisons wi th  modal  logic. The  above formula (3) is 
needed to prove this lemma. 7 

LEMMA 2.1. [Deduction Theorem] Let A be a closed formula. If F U {A} ~-0 
B, then F ~-o A D B. 

Our base logic GLo can be regarded as a fragment  of infinitary logic L~I~ 
(except the  addi t ion  of mult iple  knowledge operator  symbols) (cf., Karp [13] 
and Keisler [14]). As a space of formulae, P~, is much  smaller t h a n  the  space 
of formulae in L~I~. s. Since our pr imary  purpose  of the infinitary extension 
is to express common  knowledge explicitly as a conjunctive formula, the 
present  extension suffices for our purpose.  

6In the following, we use the transfinite induction proof on the structure of a proof 
tree from the leaves to the root (or from the root to the leaves). That  is, if the following 
two steps, (1) and (2), are proved for a proper ty  p, then p holds for all nodes: (1) the 
proper ty  p holds for all leaves; and (2) for any node x, if the proper ty  p holds for any node 
y immediately above x, then p holds also for x. This is derived from a weak form of Zorn's 
lemma. 

7The proofs are available from the authors on request. 
SWe will evaluate the "depth" of a formula A, called the grade of A, in Par t  II. The 

grade of any formula in P~ is smaller than  ordinal w 2. 
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2.2 L o g i c  GLp: P l a y e r s '  l og i ca l  a b i l i t i e s  

Logic GLo may be regarded as a description of the logical ability of the 
outside theorist, whom we call the investigator. Besides this description, the 
investigator may have the set of assumptions F, in which the basic knowledge 
of each player is described, i.e., {Ki(A) : Ki(A) E F}. Player i may deduce 
more knowledge from the basic knowledge, but unless he is given some logical 
ability, he could not derive any new knowledge from the basic knowledge. In 
this subsection, we will give each player essentially the same logical ability as 
the investigator's. That is, we define logic GLp and prove that each player is 
given the same logical ability as the investigator's. Logic GLp is the starting 
point of our game logic development. By adding some introspective axioms 
to the axioms for the description of the pure logical ability of each player, 
we will obtain logic GL1 in the next subsection. We will mention some other 
choices of epistemic logics in the end of Section 3. 

We assume that each player i = 1, ..., n knows the logical axioms L1 - 
L7. For example, the knowledge of L1 is described as Ki(A D (B D A)), 
which is denoted by Lli .  Similarly, we define L2i - L7i. We also assume that 
each player has the inference ability corresponding to MP, (A-Rule), (V- 
Rule), (V-Rule), (a-Rule): 

(MPi): 

(vi): 

(Vi): 

Ki(A ~ B) A Ki(A) D Ki(a) ;  

Ki(A{A D B :  B E ~}) D Ki(A D A~); 

Ki(A{A D B :  A e r D Ki(Vr D B); 

Ki(Vx(A D B(x))) D Ki(A D VxB(x)); 

Ki(Vx(A(x) D B)) D gi(3xA(x) D B), 

where A, B axe any formulae, �9 an allowable set, and x a bound variable. 
The above schemata are reformulations of inference rules MP- (3-Rule). 

Here the investigator has the description of the logical ability of each player 
i, and can deduce what player i may deduce. This description is made in 
the object language, while the investigator's logical ability is described in 
the metalanguage. 

For the connection between the investigator's and the players' knowledge, 
we make the minimum requirement: 

(-Li): -~Ki(-~A A A), 

where A is any formula and i = 1, ..., n. This requires that no contradiction 
be derived from player i's basic knowledge. 
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We add two more axioms, which we call the Barcan axioms: 

(V-B0: VxK (A(x)) ] g (VxA(x)); 

where �9 is an allowable set and Ki(~) denotes the set {Ki(A) : A c ~}. 
When �9 is finite, (A-Bi) is derived from other axioms, but is needed for 
infinite ~. Axiom (A-B/) will be used to derive the property: 

C(A) D Ki(C(A)) for i = 1, ...,n. (2.1) 

That is, if A is common knowledge, then each player i knows that it is 
common knowledge. This will be provable in GL1 and play an important 
role in game theoretic applications. 9 Those two axioms are also needed to 
show the equvalence between the formulations of game logics in Part I and 
those in Part II. 

Logic GLp is defined by the sets of all instances of Ll i  - L7i, (MPi) - 
(3i), (-l-i), (A-Bi) and (V-B/), denoted by Aip , for i = 1, ...,n. That is, for 
any set F of formulae and any formula A, we define the provability ~-p in 

by 

F t-p A iff F U (UAip) ~-0 A. (2.2) 
i 

When F ~-p A, the investigator deduces A from F, using his knowledge of i's 
logical ability described by Alp as well as using player i's knowledge described 
in F. When Ki(F) ~-p Ki(A), the investigator deduces that player i deduces 
A from his basic knowledge Ki(F). The following proposition states that 
each player is given the same logical ability as the investigator's. 

PROPOSITION 2.2. [Faithful Representation] Let F be a set of closed formu- 
lae. Then Ki(F) ~-p Ki(A) if and only if F ~-o A. 

The if part of Proposition 2.2 is proved by putting the outer Ki to each 
formula in a proof of A from F. Note that (A-B/) and (V-B/) are needed here. 
The only-if part will be proved in Part II, using the cut-elimination theorem 
for GLp. 

Since GLo describing the logical ability of the investigator is sound and 
complete, the logical ability of each player is also complete in the sense of 
the infinitary extension of classical logic. 

Provability ~-p has the following properties. 

9In GLp, (2.1) does not necessarily hold. However, if we eliminate condition it ~ it+l 
in the definition of K(t), then (2.1) would hold in GLp. 
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PROPOSITION 2.3. Let A be a formula, �9 an allowable set of formulae, and 
x a bound variable. Then 

(A): =-- 

(V): VZq(r 

(V): I--p Ki(VxA(x))  - VxK (A(x)); 

(3): kp 3xKi(A(x))  D gi (3xA(x)) .  

PROOF. We prove only (V). Since VxKi(A(x)) D Ki(VxA(x)) is (V-Bi), 
we have to prove the converse. Since Ki(VxA(x) D A(a)) is L6i, we have, 
from (MPi), kp Ki(VxA(x)) D Ki(A(a)), where the free variable a is taken so 
that it does not occur in Ki(VxA(x)). Hence ~-p Ki(VxA(x)) D VxKi(A(x)) 
by (V-Rule). �9 

Notice the asymmetries between (A) and (V) and between (V) and (3). 
Consider the first one. The direction D in (A) is the dual of (V), which is 
provable without (A-Bi), and the other direction is (A-Bi) itself. As was 
mentioned, (A-Bi) is necessary for game theoretical applications; without it, 
we could not have the crucial property (2.1), which does not hold yet in GLB. 
On the other hand, if we had equivalence in (V), then we would be incapable 
of considering some apparently important issues: If this was the case, for 
example, kp Ki(-,A V A) would be equivalent to  ~-p Ki(-,A) V Ki(A). The 
first one always holds since player i has the logical ability without having 
further knowledge on A, but the second requires that player i know that A 
is true or ~A is true, which depends upon some knowledge specific to A. 
Therefore the asymmetry is needed for further developments. The parallel 
argument is applied to the asymmetry between (Y) and (3). 

2.3 L o g i c  GLI: P l a y e r s '  l og i ca l  a n d  i n t r o s p e c t i v e  a b i l i t i e s  

In logic GLp, as was shown in Proposition 2.2, each player has the same 
logical ability as the investigator. Nevertheless, he may know neither his 
own logical ability nor that he knows something. For example, KI(K1 (A D 
B) AKI(A) D KI(B)) is not necessarily provable in GLp. We define another 
logic GL1 by adding introspective abilities of players. Introspective abilities 
consists of two parts: (i) if a player knows A, then he knows that he knows 
A; and (ii) he knows his logical and introspective abilities themselves. The 
addition of these introspective abilities to our framework is desirable for 
several reasons, which will be clear later. 
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Formally, the following, called the Positive Introspection axiom, describes 
(i): 

(PIi): Ki(A) D KiKi(A), 

where A is an arbitrary formula. The requirement (ii) is obtained by putting 
Ki to each formula in /kip and of (P//). That is, we denote the union of 
/kip and the set of all instances of (P/~) (i = 1, ..., n) by Ai0, and denote 
/ki0 U {Ki(A) : A E/ki0} by All. We define the provability FI in GL1 by 

F F 1 A  iff F t2(UAil )  FoA. (2.3) 
i 

In this logic, (2.1) is provable, that is, 

LEMMA 2.4. ~-~ C(A) D Ki(C(A)) for any i = 1, ...,n. 

PROOF. It holds that F1 C(A) D A{KiK(A) : K i K  E Ut<~ K(t)}. By 
(A-Bi), we have 

FI C(A) D Ki (A{K(A) : K iK c U K(t)}) (2.4) 

By (PIi), F1 C(A) D KiKi (A{K(A) : KiK E Ut<~ K(t)}). Since F1 
Ki(Ki(AC~) D AKi((I))) for any allowable O, we have F1 C(A) D Ki(A 
{KiK(A) : K iK E Ut<~ K(t)}). This together with (2.4) implies F1 C(A) D 
Ki(C(A)). �9 

As was stated, Lemma 2.4 is not necessarily proved without the Barcan 
axiom (A-Bi). This will be discussed briefly in Part II. 

Logic GLI is of special interests, since it can be regarded as an infinitary 
predicate extension of modal logic KD4 when there is only one player, i.e., 
n = 1. We define provability ~-KD 4 from ko by adding (MPi), (A-Bi), (V- 
Bi), (.ki), (P//) and 

A 
Ki(A) (Necessitation) 

for i = 1, . . . ,  Tt. 10 

PROPOSITION 2.5. Let n = 1. Let ~p be an allowable set of closed formulae, 
and A a formula. Then ~P F1 A if and only if [-KD~ A(~2 ~ A. 

1~ (Ai), (V/), (V/) and (3i) are derived in this extension. 



Game logic... 335 

When n >_ 2, this relationship breaks down, and provability ~-1 is much 
weaker than the corresponding ~-KD~ �9 For example, K2K1 (A D (B D A)) 
is not provable in GL1. To have the equivalence between them, we need 
to assume that every formula in [-Ji Ail is common knowledge among the 
players. This means that there is an infinite hierarchy from ~-1 to  ~-KD~. 
This is the subject of Section 3. 

Since �9 F-1 A is equivalent to ~-] AO D A, it suffices to show, for Propo- 
sition 2.5, that ~-1 A is equivalent to ~-KD~ A. The only-i]part is straightfor- 
ward, and the i /par t  follows from Lemma 2.6. 

LEMMA 2.6. [Necessitation] Let n = 1. Then ~l A implies ~l KI(A). 

PROOF. Suppose ~-1 A, i.e., Al l  ~-0 A. Then there is a proof of A from 
All .  By induction on the tree structure from leaves, we prove Al l  ~-0 K1 (B) 
for any formula B in the proof. Let B be an initial formula in the proof. 
Then B is an instance of L1 - L7 or is a formula in All .  If B is expressed as 
Kl(Br), then All  ~-0 K1KI(B r) by (PI1), and otherwise, KI(B) is in Al l ,  
so All  ~-0 K1 (B). Assume the induction hypothesis that Al l  F-0 K1 (C) for 
any immediate predecessor C of an occurrence of B in the proof. Then we 
have to consider the five inference rules. Here we consider only (V-Rule). 
Then B takes the form D D VxE(x) and the unique immediate predecessor 
C takes the form D D E(a), where a does not occur in and D D VxE(x). By 
the induction hypothesis, Al l  ~-0 KI(D D E(a)). Then All ~-0 VxKi(D D 
E(x)), which together with (V-Bi) implies All  ~-0 KI(Vx(D D E(x)). Thus 
we have Al l  ~-0 KI(D D VxE(x)) by (Vi). �9 

3. I t e r a t e d  k n o w l e d g e  o f  d e d u c t i v e  a b i l i t i e s  

In logic GL1 with at least two players, each player does not know the other 
players' logical and introspective abilities, though he has and knows his own. 
Once a player knows their abilities, it would be possible for him to infer 
what the others deductively know. This knowledge of players' logical and 
introspective abilities may have a nested structure, for example, player il 
knows that player i2 knows . . .  i m knows those abilities. Thus there is an 
infinite hierarchy of logics with the various degrees of nestedness. When there 
are at least two players, only the limit GL~ coincides with the infinitary 
predicate extension of modal propositional logic KD~. This limit case is 
particularly important for our applications to game theory in Sections 5 and 
6. 
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3.1 G a m e  log ics  GLm (0 <_ m < ~) 

The idea that a player knows his and the others' logical and introspective 
abilities is described by assuming that every formula in Ui All is known to 
the players in the nested manner. Define /k  m for any m < w by 

Am = {K(A): A C UAil and K C U K(t)}. 
i tKra  

(3.5) 

Recall that K(t) is the set {KilKi2...Ki~ : each K& is one of K1, ..., Kn and 
ik r ik+l for all k = 1, ..., t - 1}. Let F be a set of formulae. Then we define 
the provability F m in logic GLm by 

F F m A  i f f F U A m F o A .  (3.6) 

Of course, m < k and F F-m A imply F Fk A. 
In logic GLm (m < w), the players know the logical and introspective 

abilities of the players up to the depth m in the sense that player il knows 
that player i2 knows ... that player ira knows those abilities. In GL~, the 
players know the abilities up to any depth. That is, the abilities of players 
are common knowledge among the players. 

First, we give some lists of provable formulae in GLm. 

PROPOSITION 3.1. For any m with 1 < m < w and any L E {KKi : K E 
Ut<ra z( t)  and i = 1,..., n}, 

(MPL): Hm L(A D B) A L(A) D L(B); 

(AL): Hm L(A{A D B : B E 42}) D L(A D A42); 

(V/): t - m L ( A { A D B : A E 4 2 } D L ( V 4 2 D B ) ;  

(VL): F-ra L(Vx(A D B(x))) D L(A D VxB(x)); 

(35): Fm L(Vx(A(x) D B)) D L(3xA(x) D B); 

(-LL): Fra -~L(~A A A); 

(A-BL): ~-m AL(42) D L(A42); 

(V-BL): ~-ra VxL(g(x)) D L(VxA(x)); 

(PIL): F,~ L(A) D LKi(A), 

where A, t3 are formulae, 42 an allowable set, L(42) the set {L(C) : C C 42}, 
and x a bound variable. 
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PttOOF. When L is Ki, (MPL) - (PIL) are axioms (MPi) - (P/i) and 
belong to Ui Ail. Assume the induction hypothesis that (MPL) - (PIL) hold 
in GLm for any L E { g K i  : K e K(~) and i = 1,...,n}, where ~ + 2 < m if 
ra < w and ~ < co i f m  =co. 

Let K e K(l). Since K ( K i ( A  D B) A Ki(A) D Ki(B))  E Am, we have, 
using (MPc), km K K i ( A  D B) A K K i ( A )  D K K i ( B ) .  The other assertions 
can be proved in the same manner. �9 

Note that in GL~, (MPL) - (V-BL) hold for the common knowledge 
operator C(.) in the replacement of L(.). Assertion (PIL) is changed into 
C(Ki(A))  D C(KiKi(A)) .  

Observe that the claims of this proposition are parallel to the axioms, 
MPi - (PIi) with the replacement of Ki by L. The formulae corresponding 
to Ll i  - L7i, e.g., L1L : L(A D (B D A)), belong to Am by (3.5). Hence, 
by substituting L for Ki in the assertions of Proposition 2.3, we have the 
following. 

PROPOSITION 3.2. For any m with 1 < m <_ w and any L E { K K i  : K E 
Ut<m K(t) and i = 1, ..., n}, 

(AL): 

(vL): 

(vL): 

(3s): 

where A, 

~-rn L(Aq~) -- AL(~); 

~-m VL(~5) D L(V~); 

k- m L(VxA(x)) - VxL(A(x)); 

krn 3xL(A(x))  D L(3xA(x)) ,  

B are formulae, �9 an allowable set, and x a bound variable. 

Thus the same asymmetries as in Proposition 2.3 appear in GLm. These 
asymmetries remain for the common knowledge formula, that is, 

(At): ~ c(Ar = Ac(e); 

(vc): k-~ vc(e)  ~ c(v~); 

(Vc): F~ C(VxA(x)) =_ VxC(A(x)); 

(Bc): F~ 9xC(A(x)) D C(BxA(x)), 

where C(~) is the set {C(B) :  B e ~}. Especially, (3c) plays an important 
role in Section 6. 

The following properties hold on common knowledge. 
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PROPOSITION 3.3. Let F be a set of formulae, and A a formula. Then 

1) (Necessitation): C(F) ~-~ A imply C(F) F-w K/(A); 

2): F F-o A implies C(F) F-~ C(A); 

3): C(F) ~ A if and only if C(F) ~-~ C(A). 

PROOF. 1): This can be proved by induction on the proof of A from 
C(F) in GL~. The only crucial step is to show that for any initial formula B 
in the proof, we have ~-~ Ki(B) if B E A~ or C(F) F-w Ki(B) if B E C(F). 
The first follows from (PIi). In the second case, Lamina 2.4 is used. 

2): If F F-0 A, then it can be proved using Proposition 3.2 that K(F) ~-~ 
K(A) for any K e [.Jm<w K(rn). Hence C(F) f-w K(A) for any K. Thus 
C(F) F-~ C(A) by '(A-Rule). 
3): By (1), C(F) f-w A implies C(F) ~-~ K(A) for any K e (-Jm<~ K(m). 
Thus C(F) ~-~ C(A). The converse is straightforward. 

Note that in the above three proofs, we used (V-B/) as well as (A-B/). [] 

3.2 Relationship to modal  logic 

As was already mentioned, when n > 2, we need to go to the limit GL~ to 
make a direct comparison to modal logic KD~. 

PROPOSITION 3.4. Let n > 2. Let ~ be an allowable set of closed formulae, 
and A a formula. Then q) ~ A if and only if ~-KD~ ACP D A. 

PROOF. It suffices to prove that F-~ A if and only if ~'KD.~ A. The 
only-if part is straightforward. We can prove the if part using Proposition 
3.3.1). [] 

Thus when we assume the common knowledge of the logical and intro- 
spective abilities of the players, our logic, GL~, becomes equivalent to the 
infinitary predicate extension of KD~. 

Proposition 3.4 as well as Proposition 2.5 hold in the finitary fragment 
of our framework. Hence these results are not dependent upon the infinitary 
extension. The reason for this fact is that the common knowledge assumption 
of logical abilities are not needed to be described as object formulae for these 
equivalences. The infinitary extension plays an essential role when we discuss 
common knowledge as an object formula in the logic such as (2.1). 
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3.3 L o g i c  GLmp (1 <_ m < ~) 

We can obtain another hierarchy of logics based on I.Ji Aip instead of [Ji Ail 
also with the substitution of Kp(t) = {KilKi2...Kit : each Kit is one of 
K1, ...,Kn} for K(t) for each t. That is, the provability ~-mp in GLmp is 
defined by 

F F-rap A iff F U A,~p ~- A, (3.7) 

where Amp = {K(A) : A E [Ji Lip and K E [.Jt<m Kp(t)}. When m = 1, i-rap 
is [-p . 

The limit logic GLwp becomes equivalent to the infinitary predicate ex- 
tension of modal KD for any n > 1. Even for n = 1, since GLmp does not 
allow the Positive Introspection axiom, we need to go to the limit logic GLwp 
to have the Necessitation property. For the same reason, we need Kp(t) in- 
stead of K(t) to obtain the repetition of Ki. To obtain the exact form of 
Proposition 3.3.1) for GLIB, we need to modify the definition of common 
knowledge using Kp(t) instead of K(t) (t >__ 0). 

Similarly, we have different hierarchies when we choose some other ax- 
ioms. When we eliminate (J-i) from Alp in the definition of logic GL~op, the 
logic is an extension of modal logic K. Conversely, if we add, to Aip, the first 
of or both of 

( Veridicality Axiom): Ki(A) D A; 

(Negative Introspection Axiom): -~Ki(A) D Ki(-~Ki(A)). 

then the limit logics are equivalent to the infinitary predicate extensions of 
modal logic S~ and $5, respectively. The extension GL~s4 corresponding to 
S~ is of special interest; it is convenient for some purpose and is an extension 
of the epistemic logic often discussed, n 

Thus we can have a lot of variations of our logic GLm. The reason of 
our choice of GLm is philosophical as well as practical. Philosophically, 
GLm can allow cognitive relativism in that only consistency in each player's 
knowledge is required, while allowing the logical and introspective abilities 
of the players. The Veridicality does not allow this cognitive relativism in 
that "truth" would be defined from the viewpoint of the investigator. Also, 
the Negative Introspection axiom requires metaknowledge. Conversely, the 

n I n  the literature of epistemic logic, "knowledge" is sometimes distinguished from 
"belief" by adding the Veridicality Axiom. Hence if we follow this convention, our 
K~ should be called the belief operator, and the c o m m o n  belief of A is formulated as 
A{K(A)  : K e [-Jo<m<,~ K(m)}. 
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logical axioms as well as the Positive Introspection axiom seem to be natural 
requirements for players. 

Practically, although a stronger one is often convenient for game theoret- 
ical applications, GLrn has better proof theoretic properties than stronger 
ones in that the cut-elimination theorem which will be used to evaluate 
provability would be more powerful in GLm than in other stronger logics. 
This fact can be also interpreted from the fact that GLm permits cognitive 
relativism, which will be briefly discussed in Part II. Specifically, the unde- 
cidability results of Section 6 will not be available in the S4-type extension. 

In Sections 5 and 6, we use the limit logic GLx. The reason for this is 
that the infinite regress derived from a game theoretical consideration can 
be solved only in GL~. 

4. C o n s e r v a t i v e n e s s  o f  GLm (1 < m < w) 

This section shows that for any m (1 _< m < w), logic GLm is a conservative 
extension of the infinitary extension GLo of classical logic. This conserva- 
tiveness will play important roles in many ways. 

A formula A is said to be nonepistemic iff it does not contain any 
K1,...,Kn. Let cA be the formula obtained from A by eliminating all K1,...,Kn, 
which is, more precisely, defined by induction on the structure of a formula. 
Of course, cA is nonepistemic. We denote {cA : A E (I)} by cO. Observ- 
ing that any formula in earn is provable in GLe, for example, e(Ki(A D 
B) A K~(A) D Ki(B)) is (eAD eB) A cA D ~B, we have the following propo- 
sition. 

PROPOSITION 4.1. [Conservative Extension] Let F be a subset of T'w and A 
a formula in "P~. Then F F- m A implies eF ~o eA. 

The next proposition follows immediately from Proposition 4.1, which 
implies that the consistency of GLm is reduced into that of GLo. The con- 
sistency of GLo can be proved in the standard (semantic) manner. 

PROPOSITION 4.2. [Relative Consistency] Let F be a subset of P~. If eF is 
consistent with respect to ~-o, then F is consistent with respect to ~m �9 

The following fact will be important in Section 6: Let F be a set of 
nonepistemic formulae and A a nonepistemic formula. Then 

C(F) ~-~ ~xl . . .3x~C(A(xl , . . . ,  xt)) 
if and only if 

C(r) ~-w C(--,~Xl...~x~A(Xl, ..., xt)). 
(4.8) 
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In contrast with (~c) of Section 3, there is no distinction between these 
two negative existential statements. The above equivalence is proved as 
follows: The only-if part: by Proposition 4.1, we have, from the former, 
F ~o ~3xl. . .3xiA(xl , . . . ,xi) ,  which together with Proposition 3.3.2) im- 
plies C(F) ~-~ C(~3xl...3x~A(xl,...,x~)). The /f part: Since ~-~ C(-~Xl...  
3x~A(xl, ..., x~)) D ~3xl...~x~A(xl, ..., x~) and ~-~ ~3xl...3x~A(xl, ..., x~) D 
~C(3xl. . .~xiA(xl, . . . ,  xi)), we have ~-~ C(~xl. . .3x~A(xl , . . . ,  xi)) D~C(~xl.. .  
3x~A(xl, ..., xi)). Since ~-~ -~C(~xl...3xiA(xl, ..., xi)) D ~3xl.. .qx~C(A(xl, 
..., x~)) by (~c) of Section 3, we have ~-~ C(-~x~.. .~xiA(xl,  ..., x~)) D -~xl. . .  
~x~C(A(xl,. . . ,xi)). 

5. A p p l i c a t i o n s  t o  G a m e  T h e o r y  I: E p i s t e m i c  a x i o m a t i z a t i o n  
of  N a s h  E q u i l i b r i u m  

This and following sections provide applications of our framework to game 
theory. Since classical game theory is described in the real number system, 
we need to specify a language and axioms for a real number theory. We 
use the standard language and axioms for the ordered field theory in this 
section, and will use the real closed field theory in Section 6. These are 
sufficient for the consideration of classical game theory. This section gives an 
epistemic axiomatization of Nash equilibrium, based on Kaneko-Nagashima 
[11] and Kaneko [9]. 12 The result of the axiomatization deviates slightly from 
Nash equilibrium in classical game theory in that it becomes the common 
knowledge of Nash equilibrium. This can be regarded rather as faithful to 
the intended interpretation of Nash equilibrium in game theory. But this 
additional common knowledge operator requires us to reconsider a deeper 
problem of the playability of a game, which will be the subject of Section 6. 

In these two sections, we use game logic GLw. The consideration of the 
present section cannot be done in logic GLm for finite m. The ordered field 
axioms are, in fact, not used in this section, but the ordered field language 
suffices for the present purpose. For the existence problem of a Nash equi- 
librium, those axioms are needed. 

12We can find some axiomatizations of Nash equilibrium in the recent game theoret- 
ical literature: Bacharach [2] made some axiomatic requirements for individual decision 
making in a game situation, and proved tha t  such requirements are inconsistent even for 
a game with a unique Nash equilibrium. Aumann [1] gave an epistemic consideration of 
Nash equilibrium in a game with perfect information. Balkenborg-Winter [4] showed tha t  
common knowledge is not necessary in the case of a game with perfect information. This 
should be compared with our epistemic axiomatization. For other related game theoretical 
problems, see Kaneko-Nagashima [11] and Kaneko [9]. 
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5 .1  L a n g u a g e  a n d  b a s i c  g a m e  t h e o r e t i c  c o n c e p t s  

Here we specify the list of basic symbols: 

Constants: O, 1; Binary functions: +, - ,  , / ; 
Binary predicates: > , = ; and  ~-ary predicates: D1, . . . ,Dn ,  

in addi t ion  to the other  basic symbols specified in Section 2. The  g-ary 
predicates D1, ..., Dn are prepared for the epistemic considerat ion of Nash 
equil ibrium. The  other  symbols are prepared for the descript ion of the or- 
dered field theory. We denote  the set of all ordered field axioms and equality 
axioms by Oof (cf., Mendelson [18], [19]). We use the same symbol  = for 
formal and informal equalities, which should not cause confusions. 

First ,  we describe a noncooperat ive game in informal mathematics. Con- 
sider an n-person finite game g. For simplicity, we assume tha t  each player 
has the same finite number ,  l ,  of pure  strategies. The  payoff to player i 
f rom a pure strategy combination (sl, ..., sn) is given as a rat ional  number  
gi (sl, ..., sn). The  two-person game of Table 1 is called the "Prisoner 's  dilem- 
ma",  where each player i = 1, 2 has two pure  strategies N (not confess) and 
C (confess). Each vector in the table is a pair  of payoffs to the players, e.g., 
(gl (N, C), g2 (N, C)) = (1, 6). We allow also mixed strategies, where a mixed 
s t ra tegy for player i is a probabil i ty dis t r ibut ion over his pure  strategies. 

N C B M 
N ( 5 , 5 ) ( 1 , 6 )  B ( 2 , 1 ) ( 0 , 0 )  
C ( 6 , 1 ) ( 2 , 2 )  M ( 0 , 0 ) ( 1 , 2 )  

Table 1 Table 213 

Now we formulate  those game theoret ical  concepts in our formal lan- 
guage. First ,  we define numerals as follows: [0] is 0, [m] is [m - 1] + 1 for 
an positive integer rn, and  [m] is 0 - [ -  m] for a negative integer m. For a 
rat ional  number  q = m / k  (m/k  are irreducible and k > 1), we define [q] to 
be [m]/[k]. Thus  numerals  are closed terms. 

Using numerals,  the  above game g is described in our language as follows: 
the payoff to player i f rom a s t ra tegy combinat ion  (sl, ..., sn) is given as 
[gi(sl,...,sn)]. A mixed strategy for player i is a vector of free variables 
a-~i = (ail , . . . ,  air) satisfying the following formula: 

air = 1  A {ait >_ O : t =  l , . . . , l }  , (5.9) 

13See Luce-Raiffa [17] for game theoretical considerations of these examples. 
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which we denote by St(--~a ~). i4 Next, the payoff to player i from a mixed 
strategy combination -~a = (~ai, ...,--+an) is given as the expected payoff with 
respect to the probability distribution over the pure strategy combinations 
(si, ..., Sn) induced by a -~ : 

. . . ,  ( 5 . 1 0 )  
tl tn 

which we denote by g~(a--~) )5 Note that  this gi(a--~) is a term. In the following, 

we denote (a~i,  ...,-~a i - i ,  a-~i+i, ...,-~an) by a~_i, and (a-~i;--~a - i)  means a-~ 
itself. 

Now we have the basic description of a game g with mixed strategies. 
Finally, we formulate the Nash equilibrium concept introduced by Nash [20] 
as a generalization of the maximin strategy of von Neumann [23], [24], which 
has been playing the central role in the li terature of game theory. A Nash 
equilibrium is defined to be a mixed strategy combination -~a = (a-~i, ..., --~a n) 
satisfying the following formula: 

A 
where V x--+iA(-~i) means Vxii...VxiiA(xii, ...,xi~) and, later, 3 x-+iA(-J~'i) is 
used to denote 3xil...3x~A(xii, ..., xi~). We denote the formula of (5.11) by 
Nashg(-~a) or Nashg(~ai, ...,--a+a n). Note that  this is a formula relative to a 
specific game g. 

The prisoner's di lemma has a unique Nash equilibrium (C, C) even in 
mixed strategies (the formal counterpart  is ((0, X), (0, 1))). The two-person 
game of Table 2, called "the Battle of Sexes", has three equilibria, (B, B),  
(M,M) and ((2/3,1/3),  (1/3,2/3))  (the formal counterparts are ((1,0),  
(1,0)) ,  ( (0 ,1 ) , (0 ,1 ) )  and (([2/3], [1/3]), ([1/3],[2/3])). 

5 .2  I n f i n i t e  r e g r e s s  o f  t h e  k n o w l e d g e  o f  F i n a l  D e c i s i o n  A x -  
i o m s  a n d  i t s  s o l u t i o n  

In a game g, each player deliberates his and the others' strategy choices and 
may reach a final decision. The expression D~(a--~i) describes a strategy de- 
cision a~ finally reached by a player. Recall that  Di(.) is an ~-ary predicate 

i4The orders of summation and product of over more than two variables should be 
specified in some manners. Under the axioms q'of, these are irrelevant, but we do not use 
these axioms in this section. 

i~This formula is based on von Neumann-Morgenstern's [25] expected utility theory (cf., 
Herstein-Milnor [7] for a simple axiomatization). 
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symbol, instead of a formula. We would like to characterize this "final de- 
cision" Di(a-~i) operationally by the following four axioms: for i , j  = 1~ ..., n 
(i,j may be the same), 

D I :  V-s ( D i ( ~ i )  ~ St(~i)); 
D D 2 :  V-~l...V-~n (Aj__I_ j ( -~ j )~V-~ i (~ t ( -~ i )Dgi ( -~)~g i (~ i ; -~_ i ) ) ) ;  

D3: s2 in i ( -~ i )  D S-~jDj(-~j) ;  

D4: 

These mean: if x--+i is a final decision for player i, then DI:  it is a strategy; 
D2: given the others' final decisions x-+_i, -~i maximizes his payoff; D3: 
any other player j reaches also a final decision; and D4: all players know 
that player i reaches his final decision -/~i. Although each axiom has several 
formulae, we mean the conjunction of them by each. We denote D1 A D2 A 
D3 A D4 by D(1-4). 

Axioms D1 and D2 is apparently related to Nash equilibrium, indeed, 

I7, 
D1, D2 ~ A Di(~ai) D Nashg(~a ). (5.12) 

i=1 
Axiom D3 implies that he can make a final decision if and only if the others 
can make final decisions. In our axiomatization, each player makes his deci- 
sion by considering his and the others' decisions. Axiom D4 is an epistemic 
condition and has not been explicitly discussed in the game theory litera- 
ture. In fact, the explicit consideration of D4 leads to an infinite regress of 
the knowledge of these axioms. 

Although those axioms are intended to determine Di(~ai), we find, by 
looking at Axiom D4 carefully, that the above axioms are insufficient in the 
following sense. Axiom D4 requires that each player know his and the other 
player's final decisions, but this requirement could not be fulfilled unless the 
meaning of "final decisions" is given to the players. In fact, the meaning 
should be given by the above four axioms. Therefore we assume that each 
player knows these axioms, i.e., Ki(D(1-4)) for i = 1, ...,n. Then it holds 
that 

n 

D(1-4), A K~(D(1-4)) F-~ Di(~ai) D KjKt(Di(~ai)). 
~:1 

Again, we have a problem: player t in the mind of player j knows that a-~i 
is a final decision for player i, but he is not given the meaning of "final 
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decisions". Thus we need to assume KjKt(D(1-4)), but meet the same 
problem as above, that is, it holds in general that for any K ~ K(m) and 
m ~ w ,  

{L(D(1-4)) : L e LI K(t)} t-~ Di(a-~i) D K(Di(~ai)). 
t<m 

(5.13) 

Thus when we assume L(D(1-4)) for all L of depth up to m -  1, it is required 
that the meaning of Di(~ai) is known to the players in the sense of K of 
depth m. Hence we need to add L(D(1-4)) for L of depth m: we have 
the same problem as before. To avoid this problem, we assume {K(D(1-  
4)) : K ~ Um<w K(m)}. Thus we meet an infinite regress, which forms the 
common knowledge of D(1-4), i.e., C(D(1-4)). ~6 We will solve this infinite 
regress. 

Now we have the following proposition. 

PROPOSITION 5 .1 .  

1): C(D1 A D2 A D4) t--w A~=IDi( a-~i ) D C(Nashg(~a)); 

2): C(D(1-4)) ~-~ Di(--+a i) D ~-~_iC(Nashg(--~a i;-~-i)). 

PROOF. 1): By (5.12), C(D1 A D2 A D4) Fw AiD~(-~ai) D Nashg(-a+a). 
Let K be any element of Um<~ K(m). By Proposition 3.3.1), C(D1 A D2 A 
D4) Fw K(AiDi(--+ai) D Nashg(~a)). Using Proposition 3.1, we have 

C(D1 A D2 A D4) ~-w An=lK(Di(~ai)) D K(Nashg(-~a)). (5.14) 

Since C(D1 A D2 A D4) ~-w AiDi(-~ai) D A~K(Di(~ai)) by (5.13), we have 
C(D1 A D2 A D4) F~ A~Di(a-ffri) D K(Nashg(~a)). Since this holds for all 

K e Um<~ K(m), we have C(D1 A D2 A D4) t-~ AiDi(~ai) D C(gashg(~a)). 
2): It follows from (1) that C(D(1-4)) e~ Ajr D [D~(~) 
C(Nashg(~ai;--~a_i))]. Using L7 and (3-Rule), we have C(D(1-4)) ~-~ 

~-2_~(Aj~Dj(~j)) ~ [D~(~) D 3-~_~C(Nashg(~a~;-~_~))]. Since D3 e~ 
D~(-2a ~) D ~-~_~(Aj~Dj(-~j)), we have C(D(1-4)) ~-~ D~(~) D [D~(~) 

16We explained the necessity of each step from depth m to m + 1 in a heuristic manner. 
In the finitary fragment of GL~, we can prove that  the step of depth m cannot be derived 
from the previous one, using the depth lemma in Kaneko-Nagashima [12]. This lemma is 
not yet extended into the infinitary GL~. 
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C(Nashg( a _i))], i.e., C(D(1-4)) F-w Di( a i) D 3-: _iC(Nashg( a i; 
) ). m 

The second assertion of Proposition 5.1 states that Di(a) implies 
3~x-iC(Nashg(~ai;~-i)). In fact~ this formula can be regarded as the 
solution of C(D(1-4)) for some class of games. In the game of Table 2, 
either (pure) strategy is regarded as a candidate, since (B, B) and (M, M) 
are Nash equilibria. However, the independent choice of B for player 1 and 
M for player 2 leads to a nonNash point (B, M). To avoid this double cross, 
we restrict our attention to solvable games. A game g is called a solvable (in 
the sense of Nash [20]) iff the following holds: 

V-d21...V-'ffn (Ai (3--~_iNashg(-~i;-~_i)) D Nashg(-;~)) . (5.15) 

This is satisfied by the game of Table 1 but not by that of Table 2. We 
denote this formula by SOLV. Of course, when the game g has a unique 
Nash equilibrium, this is satisfied. 

By the expression C(D(1-4))[A1, ..., An], we mean the formula obtained 
from C(D(1-4)) by substituting each Ai(') for every occurrence of Di(') in 
C(D(1-4)). If P f-~ C(D(1-4))[A1, ...,An], then A1,...,A~ satisfy C(D(1-  
4)) under the assumptions F. The following lemma states that under the 
common knowledge of SOLE the formulae of Proposition 5.1.2) satisfy the 
axioms C(D(1-4)). 

LEMMA 5.2. Let Soli(~a i) be 3-~_iC(Nashg(~a i;--~_i)) for i= l,...,n. Then 
C(SOLV) f-w C(O(1-4))[Soll,...,Soln]. 

PROOF. We prove only C(SOLV) ~-~ C(D2)[ Sol1, ...,Soln]. First, since 
f-w Aj Solj(~aj) D AjC(S-~_jgashg(~aj;--~_j)) by (Sc) of Section 3, we 

have F-w AjSolj(~aj) D Aj3-~_jNashg(~aj;-~_j). Thus we have 

SOLV ~-~ Aj Solj(~a j) D Nashg(~a ~, ..., ~an). 

Hence 

SOLV ~-~ AjSolj(~a j) D V-~i(St(-~i) D gi(~a ) >_ gi(-ij~i; ~a_i)). 

By Proposition 3.3.2), we have C(SOLV) ~-~ C(D2)[SoI1, ...,Soln]. 
For the other axioms, we do not need C(SOLV), that is, F-~ C(D1 AD3A 

D4). 
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In Sections 5 and 6, the Barcan axiom, (A-Bi), is used only in the proof 
that Soli(-+a/) satisfies D4 or C(D4). Without (A-B/), it cannot be proved 
that Soli (-a~ai) satisfies D4. This will be discussed in a separate paper. 

The concept intended by C(D(1-4)) is the weakest one among those 
satisfying C(D(1-4)), since, otherwise, it would contain some properties 
additional to that given by C(D(1-4)). To require this idea, we impose the 
following axiom schema: 

C(D(1-4)[A1,...,An]) D V~/(A/(--x~i) D Di(-'-x~i)), 

where A1,...,An are any formulae. We denote this by WFD. Since we 
proved in Lemma 5.2 that the premise of this formula is provable with 
Sol1, ...,Soln under the assumption of C(SOLV), we have the C(SOLV), WFD 
~-~ Soli(--a~a/) D Di(--h§ This together with Proposition 5.1.2) implies the 
following theorem. 

THEOREM 5.3. C(D(1-4)), C(SOLV), WFD ~-~Di(--~aa /) - ~y_/C(Nashg(-+a i; 
) f o r  i = 1, ..., 

This theorem states that the final decision a-+/is determined to be a Nash 
strategy with the common knowledge property. It is important to notice that 
the existential quantifier is outside the common knowledge operator. If it was 
C(~y_/Nashg(---+a/;--~_i)), which is implied by ~y_/C(Nashg(---+ai;--~_i)) by 
(3c), the existence of the other players' Nash strategies are simply required 
to be known. The formula 3y_iC(Nashg(--~aa/; --]_/)) requires player i to know 
specific Nash strategies for the other players. This difference is important 
for the subject of Section 6. 

6. A p p l i c a t i o n s  t o  G a m e  T h e o r y  I I :  U n d e c i d a b i l i t y  t h e o r e m s  
o n  t h e  p l a y a b i l i t y  o f  a g a m e  

The existence of a final decision, 3-/~iD/(-;x2i) , is needed for each player to be 
able to make a final decision. By Theorem 5.3, this existence is equivalent to 
the existence of a Nash strategy with the common knowledge property, i.e., 
3-~C(Nashg(-~)). In classical game theory, the existence of a Nash equilib- 
rium is proved by using Brouwer's fixed point theorem (cf., von Neumann [24] 
and Nash [20]). When the real number axioms are common knowledge, this 
existence proof implies C(3-~Nashg(-~)), where the existential quantifiers 
are in the scope of the common knowledge operator. There is a gap between 
the above two existential statements. In this section, we adopt the real 
closed field axioms as a particular choice of real number axioms, and show 
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that although C(3~xNashg(-~)) is provable from the common knowledge 

of the real closed field axioms, ~-~C(Nashg(-~)) is formally undecidable, 

i.e., neither this existence statement nor its negation, -~xC(Nashg (%2)), is 
provable from the common knowledge of the real closed field axioms. 

6.1 R e a l  C l o s e d  F i e l d  A x i o m s  a n d  t h e  e x i s t e n c e  o f  a N a s h  
Equilibrium 

The real closed field theory is defined by adding the following axioms to the 
ordered field axioms (~of : 

Vx3y(x > 0 z ( y 2  = x)); 
and 

for any odd natural number m, 
VYm-I...Vyo3x(x m + Ym-1 xm-1 + ... + ylX + Yo = 0). 

(6.t6) 

We denote the union of Oof and the set of the formulae of (6.16) by ~rcf" 
The pair (?)of, r is called the real closed field theory, where ?)of is the 
finitary nonepistemic fragment of ?)w without including D1,..., Dn. Here we 
refer to Tarski's completeness theorem on the real closed field theory (cf., 
Rabin [21]): for any closed formula A in ?)of, either Orcf ~-0 A or Orcf F-0 -~A. 
Now we state two consequences of the completeness of (?)of, ~rcf)" 

The first one is: since SOLV is a formula in ?)of, Orcf ~-0 SOLV or 
~rcf f-0 -~SOLV by Tarski's completeness theorem. Hence the solvability of 
a game g is decidable. This implies C(~rcf) ~w C(SOLV) or C(~rcf) ~w 
C(~SOLV). In Theorem 5.3, we can eliminate the assumption C(SOLI/) 
when we assume C(~rcf) and g is chosen so that C((I'rcf) ~-~ C(SOLV). 

The second one is more important. The standard existence proof of a 
Nash equilibrium for any finite game g with mixed strategies relies upon 
Brouwer's fixed point theorem (von Neumann [24] and Nash [20]). This im- 
plies that in the standard (real number) model of (?)of, ~rcf), the existence of 

a Nash equilibrium, 3-7~Nashg(-~), is true. Since (?)of, Orcf) is complete, we 

have Orc f ~-0 3~Nashg(-~), which together with Proposition 3.5.1) implies 
the following. 

PROPOSITION 6.1. Let g be any n-person finite game. Then C(~rcf) F-w 
C(~x Nashg(~) ). 

Thus, in logic GLw, the existence ofa Nash equilibrium is common knowl- 
edge if the real closed field axioms are common knowledge. Nevertheless, this 
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is different from C(Orcf) ~-~ 3~xC(Nashg(-~)), which is required for a player 
in order to play the game g by Theorem 5.3. We would like to evaluate the 
provability of this assertion. 

The following is the key result for such an evaluation, which is called the 
term existence theorem: for a set F of nonepistemic closed formulae and a 
nonepistemic formula A with no free variables in ~xl...~x~C(A(xl, ..., xm)), 

C(F) ~-w ~Xl...3xmC(A(xl, ..., Xm)) 
if and only if 

C(F) F-~ C(A(tl,  ..., tm)) for some closed terms tl, ..., tin. 
(6.17) 

This term existence theorem will be proved in Part II, using the cut- 
elimination theorem for GLw. This theorem tells us that we should distin- 
guish between the mere knowledge of the existence and the specific objects 
having the common knowledge of property A. 

As the direct application of (6.17) to our game theoretical problem, we 
have 

C(~rc  f) ~-w ~-~C(Nashg(-~)) 
if and only if 

C((~rcf) f-~ C(Nashg(-~)) for some closed term vector -~. 

(6.18) 

Thus, for the specific existence, we need probability vectors -~i : (til, ..., tit), 
each component of which is represented as a closed term. In the present 
language together with the ordered field axioms ~of, for any closed term t 
there is a rational number r such that ~of ~- t = [r]. Informally speaking, 
(6.18) implies that there should exist a Nash equilibrium in rational numbers. 
However, this does not always hold for games with more than two players. 

6.2 U n d e c i d a b i l i t y  t h e o r e m s  o n  t h e  p l a y a b i l i t y  o f  a g a m e  

Consider the following three-person game given by both Tables 3 and 4: 

~I ~2 ~I ~2 
(o,o,1) (i,o,o) (2,0,9) (o,i,i) 

cY2 (i,i,0) (2,0,8) a2 (0,i,i) (I,0,0) 

71 72 
Table 3 Table 4 

In this game, each player has two pure strategies, and the tables mean that 
when the players choose pure strategies, say, a l ,  ~2,72, the right upper vector 
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(0,1,1) of Table 4 gives payoffs to the players. This  game has no Nash 
equi l ibr ium in pure  strategies, but  has a unique Nash equi l ibr ium ((p, 1 - 
p), (q, 1 - q), (r, 1 - r)) in mixed strategies, where 

p =  ( 3 0 -  2 v f ~ ) / 2 9 ,  q =  ( 2 v / ~ -  6)/21 and r = ( 9 -  v/~-)/12. 

The  probabil i ty weights in equi l ibr ium are irrational numbers .  Therefore 
those probabili t ies are not represented as closed terms in our language. 
Therefore it follows from (6.18) tha t  C(ff)rcf) ~-w 3-;ffV(gashg(--~)) is not 
the  case. 

In fact, the nega t ion  of this existential assertion C((I)rcf) F~ 

-~3-~C(gashg(-Tff)) is equivalent to C(~rcf)  F-w C(-,3--~Nashg(-[i~)), as was 
s ta ted  in (4.8). Hence Propos i t ion  6.1 implies tha t  it is not the  case tha t  

C((Drcf) ~-~ -~3-~C(Nashg(-'~)). 
In sum, we have the following theorem. 

THEOREM 6.2. [Formal Undecidability I] Let g be the three-person 
game given by Tables 3 and 4. Then neither C(Orcf) ~-~ ~--~C(Nashg(--~)) 
nor C((I)rcf) F-~ -~3~x C( Nashg(--~) ). 

As was s ta ted  in (6.18), the  condi t ion for a player to find a Nash s trategy 
is tha t  there is a Nash equi l ibr ium in closed terms. He can verify whether  
each closed t e rm vector satisfies the Nash condition.  Therefore if there is 
a Nash equi l ibr ium in closed terms, he would eventually find a Nash equi- 
l ibrium. However, when there is no Nash equi l ibr ium in closed terms such 
as in the game of Tables 3 and 4, he continues the verification of whether  
each candidate  satisfies the Nash condition. Each player does not have the 
knowledge of the space of closed terms, more generally, he does not have 
knowledge about  the language as a whole he is using. Therefore he should 
continue to search a Nash equil ibrium, and cannot  know whether  there is a 
Nash equi l ibr ium or not. 

For the above three-person game, our undecidabi l i ty  result would become 
a decidabil i ty one if we in t roduce a funct ion symbol  and some axiom to allow 
the radical expression x/--" Thus  the above undecidabi l i ty  result depends  
upon  the choice of a language. The  point  of the theorem is, however, tha t  
the players cannot  notice the necessity of an extension of the language, since 
nei ther  the positive nor negative s ta tement  is known to them.  

The  proper ty  tha t  a Nash equi l ibr ium involves irrational numbers  is gen- 
eral for games wi th  more t han  two players, except some degenerate  cases. 
In fact, it is proved in Bubelis [5] tha t  ' any algebraic real number  in [0, 1] 
occurs in a Nash equi l ibr ium for some three-person game with  finite numbers  
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of pure  strategies. 17 Thus  the  problem of obtaining the decidabili ty result 
in the  general case is not so simple as in the case ment ioned  in the  above 
paragraph  for the par t icular  game. This  will be discussed in Kaneko [10]. 

In Section 5, our concern was the de te rmina t ion  of final decision pred- 
icate Di(~ai). Under  axioms C(D(1-4)),C(SOLV) and WFD, final deci- 

sion Di(~ai) coincides wi th  3-~_iC(Nashg(~ai;-~-i)). Noting tha t  when  
C((I)rcf) is assumed,  C(SOLV) is not necessary, the playability of a game g 
is directly s ta ted  as 

whether  or not C(D(1-4) ) ,  WFD, C(~rcf) ~-w 3-x+iDi(-x+i). (6.19) 

In fact, we obtain a formal undecidabil i ty on 3--~iDi(--~i). 

THEOREM 6.3. [Formal Undecidability II] Let g be the three-person 
game given by Tables 3 and 4. Then 

neither  C(D(1-4) ) ,  WFD, C((I)rcf) t-~ 3-~iDi(--~i) 

nor C(D(1-4) ) ,  WFD, C(ff)rcf) t-~ -~3-~iDi(-~i). 

First ,  we prove the following lemma. 

LEMMA 6.4. Let P~ be the set of formulae in "Pw without including D1, 
�9 ..,Dn. Let g be a solvable game. Then the theory (P~,C(D(1-4)),WFD 
,C(~)rcf) ) is a conservative extension of the theory (P~#,C(Orcf)). 

PROOF. We denote,  by D#(1-4)  and WFD #, the  formulae which are 
obta ined from D(1-4)  and WED by subs t i tu t ing  Soli(.) for Di( ' )  for i = 
1, . . . ,n.  T h e n  we can prove tha t  C(~rcf)  F-w C(D#(1 -4 ) )  and C(~rcf)  ~-~ 
WFD # in P ~ .  Indeed, consider C(~rcf)  ~-wWFD # in :P~: Propos i t ion  
5.1 together  wi th  the subs t i tu t ion  of Soli(.) for D~(.) implies C (~ rc  f ) ~-~ 

C(D(1-4)[A1,...,An]) D (Ai(~ai) D Soli(~ai)), tha t  is, C((I)rcf) ~-~WFD # 
in P ~ .  

Suppose C(D(1-4)),WFD, C(Orcf) ~-~ A, where A is a formula in P~#. 
Then  there is a proof  P of A from C(D(1-4)) ,  WFD, C(ff)rcf) in GL~. We 
subst i tu te  Soli for all occurrences of Di in P, and get a proof  P #  of A from 

17Lemke-Howson [15] gave a finite algorithm to find a Nash equilibrium for a two-person 
game with mixed strategies, which implies the existence of a Nash equilibrium in rational 
numbers. Therefore undecidability fails since the existential formula is provable for any 
two-person game. However, if we formulate the real closed field theory based on only + 
and., then we obtain an undecidability result even in the two-person case. 
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C(D#(1-4)),  WFD#, C(~rcf) , that is, C(D#(1-4)),  WFD #, C(~rcf) f-w A. 
However, since the first two premises are derived from C((brcf) in P~,  this 
proof can be regarded as a proof of A from C(~rcf) in P~.  �9 

PROOF OF THEOREM 6.3. On the contrary, suppose C(D(1-4)),WFD, 
U((brcf) F-~ 3---~iDi(-~i). By Theorem 5.3, we have C(D(1-4)),WFD, 
U(Cbrcf) f-~ 3-:~C(Nashg(---~)). By Lemma 6.4, we have C(~rcf) ~-z 
3-~C(Nashg(~)), which is impossible by Theorem 6.2. 

If O( D(1-4) ), WFD, C(~rcf) ~-~ -~3 x--+iDi ( ~ ) ,  we have C( D(1-4) ), WED, 
U(Orcf) f-w ~xC(Nashg(-~)) in the same way as above. By Lemma 6.4, 
we have C(Orcf) f-w ~3~xe(gashg(-~)), which is impossible by Theorem 
6.2. �9 

7. C o n c l u s i o n s  

This paper provided the logic framework for the investigations of game the- 
oretical problems, and showed two applications. The first application is an 
epistemic axiomatization of Nash equilibrium, and the second is the unde- 
cidability on the playability of a game. The first is still a game theoretical 
problem, though it was discussed in the game logic framework. The second 
is also a game theoretical problem, but it can be regarded as a logic problem 
as well in that it is a meta-result. It is important that the latter was raised 
by the former. Therefore, these form a result belonging to both game theory 
and mathematical logic. 

To obtain the undecidability results, we used the term existence theorem, 
which is a metatheorem on provability. It is difficult to prove such metathe- 
orems in the present Hilbert style formulation. In Part II of this paper, 
we reformulate the game logic framework in the Gentzen style sequent cal- 
culus, and prove the cut-elimination theorem for it. By the cut-elimination 
theorem, we prove the term existence theorem and the converse of the Propo- 
sition 2.2 (faithful representation). The Gentzen style formulation and the 
cut-elimination theorem will provide other deeper results. These are the 
subjects of Part II. 

From the viewpoints of logic as well as of game theory, the epistemic ax- 
iomatization of Nash equilibrium in Section 5 needs more discussions. Game 
theoretical discussions are found in Kaneko-Nagashima [I I] and Kaneko [9]. 
Proof theoretical evaluations of the epistemic axiomatization will be dis- 
cussed also in [9]. 

As was mentioned, the undecidability results of Section 6 depend upon 
the choice of constants or function symbols. If more constants are introduced 
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to describe all real algebraic numbers, then we obtain the decidability results 
for any finite game. There still remain important problems in this direction 
from the viewpoint of both logic and game theory. These will be discussed 
in Kaneko [10]. 
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