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Abstract We explore the inductively derived views obtained by players with partial
temporal (short-term) memories. A player derives his personal view of the objective
game situation from his accumulated (long-term) memories, and then uses it for deci-
sion making. A salient feature that distinguishes this paper from others on inductive
game theory is partiality of a memory function of a player. This creates a multiplicity
of possibly derived views. Although this is a difficulty for a player in various senses,
it is an essential problem of induction. Faced with multiple possible views, a player
may try to resolve this using further experiences. The two-way interaction between
behavior and personal views is another distinguishing feature of the present paper.
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1 Introduction

1.1 Backgrounds

Game theory and economics are experiential sciences about individual decisions and
behavior in social contexts. However, these disciplines have by-passed the experiential
side of the beliefs/knowledge of a player by taking them for granted. As a result, these
disciplines are silent about the questions of where basic beliefs come from and how
they emerge and change with time.1 Kaneko and Matsui (1999) found this issue and
touched it in the context of discrimination and prejudices. Anticipating vast develop-
ments, they called the resulting theory inductive game theory.

When we dig deeper, many different and untouched aspects are revealed with great
potential for further explorations. Kaneko and Kline (2008a) synthesized these aspects
into a skeleton called a basic scenario. The basic scenario moves from experimen-
tations to the inductive derivations of personal views, to behavioral uses and further
experimentations, and begins the cycle again, as depicted in Fig. 1. The synthesis
reveals a clear-cut skeleton, while sacrificing a lot of details. Kaneko and Kline (2007,
2008b) and Akiyama et al. (2008) focussed on those details in different parts of the
scenario.

In this paper, we continue our exploration from the basic scenario, but now we deal
with the case of partial short-term memories and explore reciprocal effects between
memories, views, and behavior. We start with the assumption that a player has a weak
memory ability, and then define a weakened form of an inductively derived personal
view. By doing so, we are able to treat more substantive methods of induction than
what we captured in our previous works.2

With a broader notion of induction, we meet a multiplicity of personal views. We
give some uniqueness result, but this should be regarded just as a reference point. In
the uniqueness case, the inductive method can be summarized as a mechanical algo-
rithm. In the multiplicity case, we find that a variety of inductive methods may be
used with different resulting views. This variety may reflect individual differences in
cognitive abilities and propensities. Multiplicity rather than uniqueness has a greater

1 In the game theory literature, various approaches appear to be related to ours, e.g., the repeated game
approach, the evolutionary game theory approach and behavioral economics. In ex ante game theory, behav-
ior results from sophisticated decision-making based on a granted view of the game itself. The repeated
game approach (cf. Hart 2006) effectively follows this idea, though the interpretation associated with it
may often differ. In evolutionary game theory (cf., Weibull 1995) and behavioral economics (cf. Camerer
2003), behavior is described by a specified (stochastic or non-stochastic) process within the game itself but
without players thinking about the game, and limit behavior is typically analyzed. None of these approaches
deals with the origin/emergence of basic beliefs/knowledge.
2 Induction here is closer to the induction by Bacon (1889/1589) than that of Hume (1889/1759) based on
similarity. Also, biology has a similar aspect of induction. A book review (Science 317, 17, Sept. 2007) by
A. C. Love on Hall (2007) describes it as an analogy to a jigsaw puzzle: “The completion of a jigsaw puzzle
brings tremendous satisfaction; however, a few missing pieces lead to considerable frustration. Having the
intended picture of a puzzle on the container contributes to the satisfaction (or the frustration). How do
you know if you have all the pieces?... Such is the lot of biologists attempting to explain key evolutionary
transitions in the history of life.”

123



Partial memories, inductively derived views 29

Fig. 1 From experimentations
to behavioral uses

potential to explicate the multitude of different and conflicting views observed in
society.

As in Kaneko and Kline (2008a), this paper covers a long scenario, though it dis-
cusses more details in each step. It would still be inappropriate to only focus on a
single theorem in isolation. The contents with theorems need to be taken collectively
in order to grasp the full import. For the reader’s sake, a summary of important features
and results will be given in Sects. 1.3 and 9.

1.2 Developing inductive game theory

When a game theorist hears about a development of a new theory, he will likely ask
what kind of equilibrium/solution will be proposed and/or justified. Our questions do
not take such forms, since we do not aim to explore foundations of the extant equilib-
rium and/or solution concepts. Our primary focus is on the emergence of a player’s
beliefs/knowledge in a social context, its behavioral consequences, and their reciprocal
effects.

The change in focus forces us to rethink or modify even very basic notions such as
“information” in game theory. In the standard formulation of an extensive game of von
Neumann and Morgenstern (1944) and Kuhn (1953), information is expressed as a set
of possibilities in the form of an “information set”. However, at a more basic level,
information may be described as a collection of facts or data expressed symbolically.
We take the interpretation that information is transmitted and received in symbolic
pieces. These pieces and the stored memories of them become the building blocks for
the beliefs/knowledge of a player.

Treating information as pieces fits nicely into the context of inductive game theory:
Players experience some parts of the game as they play it, and each may perceive and
interpret those pieces of information in his own way. To describe individual differ-
ences in perception and storing of information, we introduce a memory function for
a player. This additional structure allows us to distinguish between the information
to be received in a play and his memories of them. He uses the latter to form his
beliefs/knowledge.
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Fig. 2 Various social situations
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For the formation of a player’s view based on his memories, we found in Kaneko
and Kline (2008a) that the standard notion of an extensive game needed to be weak-
ened. Since an extensive game consists of hypothetical nodes and branches, it becomes
cumbersome for subjective personal views and their derivations. To avoid this, Kaneko
and Kline (2008b) developed the theory of “information protocols”, based on informa-
tion pieces and actions as primitives. It describes more directly a target situation than
the theory of extensive games, in that it skips hypothetical nodes and branches. It also
takes a simple axiomatic form and can easily distinguish between the objective situa-
tion and subjective view. In comparisons of possible views, an advantage of the theory
of information protocols is manifested, which will briefly be mentioned in Sect. 5.

In this paper, information protocols are adopted to express target social situations
as well as subjective personal views. The entire social system is described in Fig. 2,
where various partial social situations are entangled. We are interested in one partic-
ular target situation such as (�o,mo), which consists of an information protocol �o

together with a profile of memory functions mo = (mo
1, . . . ,m

o
n). Playing this situation

from time to time, a player accumulates experiences, and then constructs his personal
view from them. This subjective view is also described by an information protocol.

A memory function mo
i for player i is a structure additional to an information pro-

tocol �o. In the standard literature of game theory, information sets have both roles
of information transmission and individual memory. For inductive game theory, we
need to separate memories from information transmission. Information pieces play the
role of information transmission, and a memory function describes individual local
(short-term) memory. This separation will be discussed in Sect. 3.

A remark related to this separation is on Kuhn’s (Kuhn 1953) “perfect-recall” con-
dition on information sets. In our context, this can be reformulated as a condition on
information pieces and individual histories, which we do not interpret as expressing
the memory ability of a player. We call it the distinguishability condition, which is
shown in Sect. 6 to be a sufficient condition for the existence of a unique smallest view.

1.3 The steps of this paper and some results

Since this paper has various steps, here we give a small summary of them. In Sect. 9,
the contents and results obtained in this paper will be summarized along these steps.
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Partial memories, inductively derived views 31

Step 1. In Sect. 3, we will give the definitions of an information protocol and mem-
ory functions for players. A salient point here is that an individual memory
function is allowed to be partial and has a memory module as a basic unit of
memory. That is, his short-term (local) memory is subject to forgetfulness.
In particular, the memory module of recall-1 proves to be of importance.

Step 2. The transition process from short-term memories to long-term memories was
explained in Kaneko and Kline (2008a) and more fully in Akiyama et al.
(2008). Here, the process is only briefly and informally explained in Sect. 2.
Formally, we will take the resulting domain of accumulations of experiences
for granted.

Step 3. We will give a generalized definition of an i.d.view, which allows general
existence of an i.d.view. However, there are an infinite number of i.d.views.
We will focus on minimal/smallest i.d.views. Minimality avoids large redun-
dant views, but there may be still multiple minimal views. When the memory
function mo

i is subject to partiality, minimal views may not capture essential
structures, since they may be too small.

Step 4. Under Kuhn’s distinguishability condition, we show the unique smallest view,
which will be discussed in Sect. 6.

Step 5. As the experienced domain is increased with time, a personal view is evolv-
ing, i.e., for some time, it is getting larger but for other time, it gets stuck to
a fixed one even if he has more experiences. This will be exemplified with
Mike’s bike in Sects. 2 and 7.

Step 5. The last step is to check an i.d.view with new experiences in the objective
situation. He may reach a certain view and it becomes stable in the sense that
he does not notice any incoherence between his view and his experiences.
However, this takes a long time or he fails to reach it. In Sect. 8, we consider
some difficulties for a player’s payoff maximization.

2 Mike’s bike commuting (1)

One important step of inductive game theory is the transition from a short-term mem-
ory to a long-term memory and an accumulation of long-term memories. This step is
elucidated in Kaneko and Kline (2008a) and Akiyama et al. (2008). In this paper, we
skip the transition step but adopt certain concepts derived from it such as a domain
of accumulation. In this section, we use a variant of “Mike’s Bike Commuting” of
Akiyama et al. (2008) to illustrate the transition step. This example will be discussed
once more in Sect. 7.

Mike’s bike commuting: Mike moved to the new town and started commuting from his
apartment to his office by bike. The town has the lattice structure depicted in Fig. 3a. At
each lattice point, he receives an information piece, S,W, N , E,M, SW, SE, N W ,
or N E . He has two possible actions “e” and “n” at SW, S,W and M . At N W and N ,
he must choose e, and at SE and E , he must choose n.

Mike regularly takes the route indicated by the bold arrows, directly north from
SW to N W and directly east to N E , which his colleague suggested to him. Only
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Fig. 3 Mike’s bike commuting

occasionally, he deviates to some other behavior and finds some other route. When he
deviates from to some new lattice point, like the south M in Fig. 3b, he then follows
his default behavior n when it is available.3

In the very beginning, he commutes through the regular route, which means that
the domain of accumulation consists of paths connecting the lattice points within the
regular route only. After some time, he might try a deviation from the lower W by
taking e there and then following his default behavior up to N . In this case, the domain
of accumulation consists of the lattice points in the dotted line in addition to those in
the bold line in Fig. 3b. The deviation to e at the southwest M needs a higher order
trial: One deviation to e at the south W and the other deviation to e at that M are
required. It is our contention that it takes more time to experience and to learn the
results of higher order deviations.

The lattice picture is an accurate summary of the town. The player, on the other
hand, may not have access to such a description. Rather, he may receive only the infor-
mation pieces attached to each lattice point he experiences with the action taken there.
At each lattice point he reaches, he receives an information piece and a short-term
(local) memory occurs in his mind. One possible form of this memory is to recall only
the current and last piece received with the last action taken there. For example at the
southwest M, if he comes from the south W, his local memory is just 〈(W, e),M〉.
This is a basic memory module, which we call a memory module of recall-1. It plays
a fundamental role in this paper.

At each lattice point in the domain of accumulation, the local (short-term) mem-
ory is experienced several times and then may be changed to a long-term memory.
Hence, the set of accumulated long-term memories, which we will call a memory kit,
is expressed as the set of such local memories over the domain of accumulation. The
formal definitions of these concepts will be given in Sect. 3.3.

Now, Mike’s problem of induction is to combine those small modules to one pic-
ture. For example, we ask whether or not he can recover the objective picture of Fig. 3a
from his accumulated memories. We will give some answers in Sect. 7.

3 It is assumed in Akiyama et al. (2008) that Mike is also given a small map of the town. Here, we do not
make this assumption; instead, we ask what map(s) Mike constructs from his partial local memories.
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3 Information protocols, memory, views, and behavior

In Sect. 3.1, we describe information protocols and the axioms for them introduced in
Kaneko and Kline (2008b). Section 3.2 introduces the concept of a memory function
for a player, which is the interface from the objective world to his mind. Then, we
define an objective description (�o,mo) and a personal view (�i ,mi ) of player i . In
Sect. 3.3, we give a definition of a behavior pattern (strategy configuration) for the
players, and also describe a domain of accumulation for memories and a memory kit.

3.1 Information protocols and axioms

The concept of an information protocol deals with information pieces and actions as
primitive concepts, and describes connections between histories to new information
pieces and actions. An information protocol is given as a quintuple �= (W, A,≺,
(π, N ), (h)i∈N∗), where

IP1: W is a finite nonempty set of information pieces;
IP2: A is a finite nonempty set of actions;
IP3: ≺ is a causality relation; formally, it is a finite nonempty subset of

⋃∞
m=0((W ×

A)m × W ), where4 every w ∈ W and every a ∈ A occur in some sequence in ≺.

The set (W × A)0 × W is stipulated to be W. A sequence in ≺ is called a feasible
sequence. We say thatw ∈ W is a decision piece iffw occurs in [(w1, a1), . . . , (wm,

am)] for some feasible sequence 〈(w1, a1), . . . , (wm, am), wm+1〉 in ≺. We denote
the set of all decision pieces by W D, and define W E = W − W D , where each piece
in W E is called an endpiece. Using those notions, we describe the fourth and fifth
components of a protocol.

IP4 (player assignment): N = {1, . . . , n} is a finite set of players, and π : W → 2N

is the player assignment, where |π(w)| = 1 for all w ∈ W D and π(w) = N for all
w ∈ W E ;
IP5 (payoff assignment): hi : W E → R for all i ∈ N∗, where N∗ ⊆ N .

An information protocol starts with tangible elements in W and A listed in IP1 and
IP2. Each w ∈ W may be interpreted as a pure symbolic expression like a gesture, a
sentence in an ordinary language, or a formula in the sense of mathematical logic. In
Mike’s bike commuting of Fig. 3a, W = {SE,W, N , E,M, SW, SE, N W, N E} and
A = {e, n}. The set ≺ given in IP3 describes the feasible sequences of these elements
possibly occurring in the plays of the game. A feasible sequence 〈(w1, a1), . . . , (wm,

am), w〉 is interpreted as meaning that a player first received piece w1 and took action
a1, then sometime later another player receivedw2 and took action a2, so on, and now,
a player receives w. It is not yet assumed that this sequence is an exhaustive history
up to w. An exhaustive history will be defined presently.

4 In Kaneko and Kline (2008b), we treated this additional part (no superfluous pieces and actions).as a
separate condition since redundancy has some implications for targeted comparisons between information
protocols and extensive games. Here, it is easier to assume the condition.
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We sometimes write [(w1, a1), . . . , (wm, am)] ≺ w for 〈(w1, a1), . . . , (wm, am),

w〉 ∈≺ .We use 〈ξ,w〉 to denote a generic element of
⋃∞

m=0((W × A)m ×W ). The set
≺ is the union of subsets of (W × A)0 ×W = W, (W × A)1 ×W , (W × A)2 ×W, . . .
We are interested only in finite information protocols, i.e., W, A and ≺ are all finite
sets. Throughout the paper, we assume W ∩A = ∅ to avoid unnecessary complications.

An information protocol is completed by adding the player assignment and the
payoff assignment. The player assignment π in IP4 assigns a single player to each
decision piece, and the set of all players N to each endpiece. In IP5, the payoff function
hi is specified for each player i in the set N∗ ⊆ N . We allow N∗ to differ from N to
describe a personal view where only some players’ payoffs are known to the player.
In the present paper, we consider the case of either N∗ = N or N∗ = {i}.

We assume for simplicity that each piece w ∈ W contains the following informa-
tion, which player i should be able to read by looking at w:

M1: a full set Cw of available actions at w if w is a decision piece;
M2: the value π(w) of the player assignment π if w is a decision piece;
M3: his own payoff hi (w) (as a numerical value) if w is an end piece.

In M1, the set Cw of available actions at w is written on the decision piece w. The
full set Cw is used for an objective description but may not be used in a subjective
protocol �, which will be defined in Sect. 3.2. In the subjective case, a player will
use only the set of actions at w occurring in his view. We denote this set at w by Aw :

Aw := {a ∈ A : [(w, a)] ≺ u for some u ∈ W } ⊆ Cw. (1)

This is the coherence condition with the full set Cw. Condition M2 requires w to
include the information of who moves at w. Here, player i may receive (or observe)
a decision piece w at which another player j moves. Finally, in M3, each player can
read his own payoff from each endpiece.

We use information protocols to describe both the target objective situation and a
personal subjective view. The formal distinction between them is made by means of
axioms for them. A protocol for the former should satisfy two basic axioms and three
non-basic axioms. A protocol for a personal view will be required to satisfy only the
two basic axioms. We give the full set of basic and non-basic axioms now.

The first basic axiom is subsequence-closedness. For it, we need a concept of a
subsequence of a sequence in

⋃∞
m=0((W × A)m × W ). We say that a subsequence of

〈(w1, a1), . . . , (wk, ak), wk+1〉 is legitimate iff it belongs to
⋃∞

m=0((W × A)m × W )

and each pair in the subsequence is a component of the original sequence. For example,
〈wt 〉, 〈(w1, a1), wk+1〉 and 〈(w2, a2), . . . , (wk−1, ak−1), wk+1〉 are legitimate subse-
quences of 〈(w1, a1), . . . , (wk, ak), wk+1〉, but [(w2, a2), (w3, a3)] is not. A legiti-
mate super sequence is defined in the dual manner.

Axiom B1 (Subsequence-closedness): If 〈ξ,w〉 ∈≺ and 〈ξ ′, w′〉 is a legitimate sub-
sequence of 〈ξ,w〉, then 〈ξ ′, w′〉 ∈≺.

Since we consider only legitimate subsequences and super sequences through-
out this paper, we simply write subsequences and super sequences by abbreviating
“legitimate”.
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The second basic axiom states that a feasible sequence ending is a dicision piece
can be extended to a longer feasible sequence.

Axiom B2 (Weak extension): If ξ ≺ w andw ∈ W D , then there are a ∈ A and v ∈ W
such that [ξ, (w, a)] ≺ v.

Any protocol � that satisfies Axioms B1 and B2 is called a basic protocol.
To state the non-basic axioms, we need the notion of an exhaustive history called

a position. First, we define an initial segment of a sequence 〈(w1, a1), . . . , (wm, am),

wm+1〉 to be 〈(w1, a1), . . . , (wk, ak), wk+1〉 for some k ≤ m. We say that a feasible
sequence 〈ξ,w〉 is maximal iff ≺ contains no proper feasible supersequence 〈η, v〉 of
〈ξ,w〉. A position 〈ξ,w〉 is defined to be an initial segment of some maximal feasible
sequence 〈η, v〉. Thus, each position is an exhaustive history up to w in�. We denote
the set of all positions by �. Then, we partition � into the sets:

�D =
{
〈ξ,w〉 ∈ � : w ∈ W D

}
and �E =

{
〈ξ,w〉 ∈ � : w ∈ W E

}
. (2)

We call 〈ξ,w〉 ∈ �D a decision position and 〈ξ,w〉 ∈ �E an endposition.
Let Y be a subset of

⋃∞
m=0((W × A)m × W )). We define:

�Y = {〈ξ,w〉 : 〈ξ,w〉 is a subsequence of some sequence 〈η, v〉 ∈ Y }. (3)

Using this, Axiom B1 is stated as ≺= �(≺).
The following lemma states that we can represent a basic protocol in terms of

endpositions, which may be much easier to describe than the set ≺ .

Lemma 3.1 Let � = (W, A,≺, (π, N ), (hi )i∈N∗) be a basic protocol. Then
≺ = ��E .

Proof Let 〈ξ,w〉 be any sequence in ≺. Then 〈ξ,w〉 has a super sequence 〈ζ, v〉 which
is a maximal feasible sequence in ≺ . By Axiom B2 (weak extension), v ∈ W E .

Hence, 〈ζ, v〉 ∈ �E , and so 〈ξ,w〉 ∈ ��E . For the converse, let 〈ξ,w〉 ∈ ��E .
Then 〈ξ,w〉 is a subsequence of some 〈ζ, v〉 ∈ �E . Since�E ⊆ � ⊆≺ by Axiom B1
(subsequence-closedness), we have 〈ζ, v〉 ∈≺, and, again by B1, 〈ξ,w〉 ∈≺. ��

We now list the three non-basic axioms based on the notion of a position.

Axiom N1 (Root): There is a distinguished element w0 ∈ W such that 〈w0〉 is an
initial segment of every position.

This axiom means that all positions start with w0. Without this, the protocol may
have various starts. The next axiom states that an exhaustive history determines a
unique information piece.

Axiom N2 (Determination): Let 〈ξ,w〉 and 〈η, v〉 be positions. If ξ = η and it is
nonempty, i.e., 〈ξ,w〉 �= 〈w〉, then w = v.

The last axiom states that the set of available actions at an information piece is
independent of a history.
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Axiom N3 (History-independent extension): If 〈ξ,w〉 is a position and [(w, a)] ≺ v,
then 〈ξ, (w, a), u〉 is a position for some u ∈ W .

Axiom N3 implies that the set of available actions at any position 〈ξ,w〉 is the same
as Aw given in (1). If N3 is violated, the set of available actions differ at two positions
ending with the same information piece.

When an information protocol� satisfies Axioms B1, B2, N1, N2, N3 and N∗ = N ,
we call it a full protocol. A full protocol will be used to describe a target objective situ-
ation, that is, an objective situation is a full protocol� = (W, A,≺, (π, N ), (hi )i∈N ).

For a personal view, we require only Axioms B1, B2, and also, the payoff assign-
ment for only the player in question, that is, a subjective protocol is a basic protocol
� = (W, A ≺, (π, N ), (hi )i∈N∗) with N∗ = {i}.

Kaneko and Kline (2008b) showed that a full protocol is equivalent to an exten-
sive game in Kuhn’s (Kuhn 1953) sense with the replacement of information sets by
information pieces. The equivalence states that from a given full information proto-
col � = (W, A,≺, (π, N ), (hi )i∈N ), we can construct an extensive game, and vice
versa. Also, it is shown that the deletion of each of Axioms N1, N2, N3 corresponds
to some weakening of the definitions for an extensive game. It was also shown that
such weakenings are arising naturally as inductively derived views. In Sects. 4, 6
and 8 of the present paper, we will encounter several examples violating some of
Axioms N1–N3.

We now give one example, which will be used in subsequent sections.

Example 3.1 Consider the following 2-person situation in Fig. 4, in which the end-
pieces are described as z1 to z4, and players 1, 2 move atw0 andw1, w2, respectively.

To describe this as an information protocol, we take W = {w0, w1, w2, z1, . . . , z4}
and A = {a, b}. The set of feasible sequences ≺ is quite large, but by Lemma 3.1 it suf-
fices to list only the endpositions�E = {〈(w0, a), (w1, a), z1〉, 〈(w0, a), (w1, b), z2〉,
〈(w0, b), (w2, a), z3〉, 〈(w0, b), (w2, b), z4〉}. This protocol is full, and can be inter-
preted as an objective situation.

Remark on Mike’s map as a protocol: Fig. 3a can be transformed to a full informa-
tion protocol, but this transformation loses the lattice structure of the map. The map
requires some geographical identity, while the information protocol treats only his-
torical identity. In Fig. 3a, two positions (historical paths) 〈(SW, n), (W, e),M〉 and
〈(SW, e), (S, n),M〉 determine the same geographical point, the southeast M; this
requires some additional criterion, e.g., paths with the same numbers of east and north

Fig. 4 2-player protocol
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actions identify the same geographical point. The present theory of an information
protocol has no such criterion.

3.2 Memory functions and views

The central part of inductive game theory is the consideration of a derivation of a
personal view from memories accumulated in a player’s mind. The source for an
inductive derivation is his memories from experiences. Therefore, a certain interface
from individual experiences to memories is required. Here, we give the concept of a
memory function as the description of such an interface.

A memory function describes a personal memory capability within one play of an
information protocol. In other words, it describes short-term (local, temporal) mem-
ories within one play of the game. Transition from short-term memories to long-term
memories needs another structure, which is discussed in Kaneko and Kline (2008a)
and Akiyama et al. (2008). We will take some resulting concepts for granted.

Now, let� be a basic information protocol, and let� be the set of positions in�. In
Kaneko and Kline (2008a), the domain of a memory function for player i is assumed
to be the set

�i := {〈ξ,w〉 ∈ � : i ∈ π(w)} (4)

of player i’s positions. A memory function may give a short-term memory including
other players’ previous moves. Thus, we extend the domain of a memory function for
player i to a superset of�i . That is, the domain of a memory function is given as a set
Yi with �i ⊆ Yi ⊆ �.

Definition 3.2 (Memory functions) A memory function mi of player i assigns, to each
〈ξ,w〉 ∈ Yi , a finite sequence 〈ζ, v〉 = 〈(v1, b1), . . . , (vm, bm), v〉 satisfying:

v = w; (5)

m ≥ 0 and vt ∈ W, bt ∈ Avt for all t = 1, . . . ,m. (6)

Condition (5) means that the latest piece is the one received at the current position
〈ξ,w〉. Except for this requirement, enough flexibility is allowed in (6) so as to cap-
ture forgetfulness and incorrect memories. Note that the domain Yi may contain other
players’ positions, in which case player i receives some other player’s information
piece.

We call the value mi 〈ξ,w〉 = 〈ζ, v〉 a memory thread and each of (vt , bt ) andv in the
thread a memory knot. Thus, the most primitive element in memory is a memory knot,
and a memory thread is a sequence consisting of several memory knots. When player
i reaches a position 〈ξ,w〉, the memory thread 〈ζ, v〉 = 〈(v1, b1), . . . , (vm, bm), v〉
occurs spontaneously in his mind. Memory knots v, (vm, bm), . . . , (v1, b1) may be
recalled in the reverse order. A limitation on a player’s short-term memory suggests
that these threads should be short. The most basic case is the memory module of
recall-1, i.e., he receives v and recalls (vm, bm) only, which was discussed in Sect. 2.
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We will consider a slightly more general class of memory functions, called
“recall-k”. By “recall-k”, player i can recall the k latest memory knots within Yi ;
this is a limitation on the length of a memory thread (not a duration of a short-term
memory). For this definition, we need the definition of the Yi -part of a position in Yi .
It is the exhaustive and objective history at a position related to player i in the sense of
given Yi .

Formally it is defined as follows: First, we define the index set {t : t = 1, . . . ,m +1
and 〈(w1, a1), . . . , (wt−1, at−1), wt 〉 ∈ Yi },which is denoted by { j1, . . . , js+1}. Then,
the Yi -part 〈ξ,w〉i of 〈ξ,w〉 is defined to be 〈(w j1, a j1), . . . , (w js , a js ), w js+1〉. This
is the maximal subsequence of 〈ξ,w〉 with the property that the initial segment of
〈ξ,w〉 up to each jt is a position in Yi . Thus, it is the exhaustive and objective history
at 〈ξ,w〉 related to player i. For example, when 〈ξ,w〉 = 〈(w1, a1), (w2, a2), w3〉 =
〈(u, a), (u, b), u〉 and Yi = {〈u〉, 〈(u, a), (u, b), u〉}, the index set is {1, 3}. Thus,
〈ξ,w〉i = 〈(w1, a1), w3〉 = 〈(u, a), u〉.

The recall-k memory function needs the following notation: For 〈ξ,w〉i = 〈(v1,

b1), . . . , (vs, bs), vs+1〉 and a non-negative integer k, we define 〈ξ,w〉k
i by

〈ξ,w〉k
i =

{ 〈(vs−k+1, bs−k+1), . . . , (vs, bs), vs+1〉 if k ≤ s
〈ξ,w〉i if k > s.

(7)

It takes the last k part of 〈ξ,w〉i , but when k is larger than s, it takes the entire 〈ξ,w〉i .

Also, when k = 0, we stipulate that 〈ξ,w〉0
i = 〈vs+1〉 = 〈w〉.

The recall-k memory function is now formulated as :

mRk
i 〈ξ,w〉 = 〈ξ,w〉k

i for each 〈ξ,w〉 ∈ Yi . (8)

When the memory bound k is zero, i.e., player i has no recall ability in short-term mem-
ories, it is called the Markov memory function mR0

i . It holds that mR0
i 〈ξ,w〉 = 〈w〉

for all 〈ξ,w〉 ∈ Yi . This is of importance only as a reference point of our analysis.5

The recall-k memory functions may include partiality and forgetfulness, but the
memories are correct in the sense that each memory thread is a subsequence of the
true position. This correctness will be used in Theorem 8.1.

When k is longer than the maximum depth of the protocol, we call mRk
i the per-

fect-recall memory-function.6 denoted by mP R
i . It is given as:

mP R
i 〈ξ,w〉 = 〈ξ,w〉i for each 〈ξ,w〉 ∈ Yi . (9)

With mP R
i , player i recalls all the information pieces and actions previously observed

by himself. This function will play an important role in Sects. 5 and 8.

5 A reader may wonder why mR0
i , instead of mR1

i , is called Markov. In probability theory, “Markov”
means that the present random variable depends only upon the immediately previous random variable. It is
the analogy here that the present action is taken only depending upon the immediately previous (present)
information piece.
6 This differs considerably from Kuhn’s Kuhn (1953) “perfect-recall” condition on information sets, which
will be discussed in Sect. 6.

123



Partial memories, inductively derived views 39

Two extreme cases with respect to Yi should be emphasized. When Yi coincides
with the set� of all positions, the memory function defined by (9) is called the perfect-
information memory function and is denoted by mP I

i . In this case, mP I
i 〈ξ,w〉 = 〈ξ,w〉

for all 〈ξ,w〉 ∈ Yi = �.With mP I
i , player i recalls the complete history within a play

of � including the other players’ pieces and actions. The other extreme is given by
Yi = �i = {〈ξ,w〉 ∈ � : i ∈ π(w)}, and the memory function mP R

i is called the
self-scope perfect-recall memory function, denoted by mS P R

i . With this, the player
only has memories of his own information pieces and actions. This was exclusively
used in Kaneko and Kline (2007, 2008a).

Having described an information protocol and memory functions, we now have the
basic ingredients for objective descriptions and subjective personal views.

The objective description is the target social situation for our study. It exists in the
objective world and constitutes one part of the entire social system depicted in Fig. 2.
We regard a full protocol as a complete description up to observables: information
pieces and available actions.

Objective situation: A pair (�o,mo) is called an objective situation iff�o = (W o, Ao,

≺o, (πo, N o), {ho
j } j∈N o) is a full protocol with Ao

w = Cw for all w ∈ W oD and
mo = (mo

1, . . . ,m
o
n) is an n-tuple of memory functions in �o.

We use the superscript o to denote the objective situation, and put a superscript i
to denote a personal view of player i .

A personal (subjective) view exists in the mind of player i, and it is derived from
only his observations. Typically such a view is a partial description of the objective
situation (description). Thus, we require it only to be a basic protocol. One remark
is that player i cannot directly experience the others’ payoffs and local memories.
Hence, his personal view contains his payoff functions and memory function only.

Personal view: A pair (�i ,mi ) is a personal view for player i iff �i = (W i , Ai ,

≺i , (π i , N ), hi ) is a subjective protocol, i.e., it is a basic protocol, with a specification
of player i’s payoff function hi , and mi is a memory function for player i in �i .

3.3 Behavior patterns, closed domains, and memory kits

Suppose that the objective situation (�o,mo) is played repeatedly. Behavior of each
player is described by the concept of a behavior pattern. Recall that �oD and �o

i are,
respectively, the set of decision positions for all players and that of positions for player
i. Let �oD

i := �oD ∩�o
i be the set of decision positions for player i .

A function σi on �oD
i is a behavior pattern (strategy) of player i iff it satisfies: for

all 〈ξ,w〉, 〈η, v〉 ∈ �oD
i ,

σi 〈ξ,w〉 ∈ Ao
w; (10)

mo
i 〈ξ,w〉 = mo

i 〈η, v〉 implies σi 〈ξ,w〉 = σi 〈η, v〉. (11)

Condition (10) means that σi prescribes an available action to each decision position,
and (10) that σi depends upon the local memory of the player moving there. We denote,
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by
o
i , the set of all behavior patterns for player i in (�o,mo).We say that an n-tuple

σ = (σ1, . . . , σn) is a profile of behavior patterns.
Although a behavior pattern is defined as a complete contingent plan, we do not

require that the player be fully aware of it. Rather he should be able to take an action
whenever he is called upon to move. Condition M1 ensures that a player can see the
available actions, and pick one, maybe, a default action, whenever one of his deci-
sion pieces is reached. We use the term behavior pattern to express the idea that the
behavior of a player may initially have no strategic considerations. Once a player has
gathered enough information about the game, his behavior may become strategic.

We presume that the players follow some regular behavior patterns σ o =
(σ o

1 , . . . , σ
o
n ). Sometimes, however, some players may deviate from these behavior

patterns, which leads to new experiences and short-term memories for them. These
short-term memories remain for some periods of time, but after these periods, they
would disappear, except when they have occurred frequently enough to reinforce the
short-term memories as lasting in his mind. When such a case occurs, a short-term
memory becomes a long-term memory, and remains for longer periods.

Since there are many aspects involved in such an evolution process, there would be
many possible formulations of the dynamics. Also, since the relevant time structure
must be finite, limit theorems are not of interest to us at all. Therefore, we think that a
computer simulation is an appropriate method to study the dynamics of accumulation
of long-term memories. One simple version is given in Akiyama et al. (2008). Here, we
do not give a formulation of a dynamics itself. Instead, we give a general definition of
possible results of such a dynamic accumulation process, which we call a memory kit.

The memory kit is defined over its objective counterpart, a domain of accumulation
Di , which is is a subset of Yi satisfying:

Di contains at least one endposition 〈ξ,w〉 in �o. (12)

In the beginning of trial-error, this condition may not be satisfied. We consider the
inductive process after he reaches a state with (12).

For Di , we start with a basic domain. A subset Dcane
i of Yi is said to be a cane

domain iff for some endposition 〈ξ,w〉, Dcane
i is given as the set {〈ζ, v〉 ∈ Yi : 〈ζ, v〉

is an initial segment of 〈ξ,w〉}. Thus, Dcane
i is the set of all positions in Yi continuing

to the endposition 〈ξ,w〉. When every player follows his regular behavior pattern σ o
i

with no deviations, we have the regular cane domain. A subset Di of Yi is said to be a
closed domain of accumulation iff it is expressed as the union of some cane domains.
A closed domain satisfies (12). We focus largely on closed domains in this paper.

A domain Di is still the objective description of experienced positions for
player i . However, this gives the memory kit TDi describing the accumulated experi-
ences in the mind of player i:

TDi := {
mo

i 〈ξ,w〉 : 〈ξ,w〉 ∈ Di
}
. (13)

It is determined by both the domain Di and the objective memory function mo
i of

player i . This is the set of long-term memories changed from short-term memories.
See Kaneko and Kline (2008a) and Akiyama et al. (2008) for full discussions about
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such transitions. The memory kit TDi is the source for an inductive construction of a
personal view, i.e., the memory threads in TDi are used to construct a skeleton of the
personal view.

4 Inductive derivations

We now start the main part of the paper. It is about the inductive construction of a
personal view from a memory kit TDi of player i . Partiality in a player’s local memory
forces us to consider multiple views for the same memory kit, which opens the theory
to new types of induction. In Sect. 4.3, we discuss the existence of an inductively
derived view for each memory kit on a given domain, and conditions for a given set
of memory threads to generate an inductively derived view.

4.1 Inductively derived views

Suppose that the objective situation (�o,mo) = (W o, Ao,≺o, (πo, N o), {ho
j } j∈N o ,

{mo
j } j∈N o) is fixed. The sets of decision pieces and endpieces in �o are denoted by

W oD,W oE , and the corresponding sets in a personal view (�i ,mi ) are denoted by
W i D,W i E . Now, an inductively derived view is defined as follows.

Definition 4.1 (I.D.View). A personal view (�i ,mi )=(W i , Ai ,≺i , (π i, N i ), hi ,mi )

for player i is an inductively derived view from a memory kit TDi iff

ID1 (Information Pieces): W i = {w ∈ W o : w occurs in some sequence in TDi },
W i D ⊆ W oD and W i E ⊆ W oE ;
ID2 (Actions): Ai

w ⊆ Ao
w(= Cw) for each w ∈ W i ;

ID3 (Feasible sequences): �TDi ⊆≺i ;
ID4 (Player assignment): π i (w) = πo(w) ifw ∈ W i D and π i (w) = N i ifw ∈ W i E ,

where N i := { j ∈ N o : j ∈ π i (w) for some w ∈ W i D};
ID5 (Payoff assignment): hi (w) = ho

i (w) for all w ∈ W i E ;
ID6 (Memory function): mi is the perfect-information memory function mP I for�i .

The above definition is the same as the one in Kaneko and Kline (2008b) except
condition ID3. In Kaneko and Kline (2008b), the corresponding condition requires
equality, i.e., �TDi =≺i . The same type of requirement was made in Kaneko and
Kline (2007, 2008a) for the extensive game version of an i.d.view. Nevertheless,
here we should discuss all of ID1–ID6. These connect the candidate i.d.view to the
objective situation (�o,mo) by making use of the minimum information conditions
stated in M1, M2, and M3. Condition ID3 will be discussed after the other conditions.

Since (�i ,mi ) is a personal view, it is required to satisfy Axioms B1 and B2.
Condition ID1 states that player i uses only information pieces he finds in his mem-

ory kit, i.e., the set W i defined from ≺i by IP3 coincides with the set of pieces occurring
in TDi . It follows from M1 and M3 that he distinguishes between the decision pieces
and endpieces; thus, W i D ⊆ W oD and W i E ⊆ W oE . Condition ID2 requires that an
available action at w in the player’s view should be objectively available at w, i.e.,
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Fig. 5 Absent-minded driver

Fig. 6 Mixed-up absent-minded
driver

Ai
w is defined from ≺i by (1), but is not limited to the set of actions occurring in TDi .

Conditions ID4 and ID5 are based on M2 and M3 to connect the player assignment at
decision pieces and payoffs at endpieces in�i to those found in the objective protocol
�o. We assume condition ID6 since the view (�i ,mi ) is in the mind of player i .

Once a personal view is specified with ID1, ID2 and ID3, the other ID4, ID5 and
ID6 uniquely determine the player assignment, payoff and memory function. Hence,
all questions about an i.d.view for a given TDi can be answered by checking ID1–ID3.

Let us return to ID3. A simple example shows the need for the weaker form,
�TDi ⊆≺i , of ID3 when memory is partial.

Example 4.1 (The absent-minded driver game): Consider the 1-player protocal
(�o,mo

1) described as Fig. 5 with the recall-1 memory function mo
1 = mR1

1 , where
payoffs 0, 6, 3 are regarded as information pieces. Recall-1 gives him the following
memories: mR1

1 〈w〉 = 〈w〉,mR1
1 〈(w, c), w〉 = 〈(w, c), w〉,mR1

1 〈(w, c), (w, c), 3〉 =
〈(w, c), 3〉,mR1

1 〈(w, e), 0〉 = 〈(w, e), 0〉 and mR1
1 〈(w, c), (w, e), 6〉 = 〈(w, e), 6〉.

This differs from the interpretation considered in Isbell (1957) and Piccione and
Rubinstein (1997) in that player 1 can distinguish the first 〈w〉 from the second
〈(w, c), w〉. Nevertheless, his forgetfulness prevents him from understanding the
objective protocol.7

Consider the case of the full domain of accumulation D1 = �o. His memory kit
is TD1 = {〈w〉, 〈(w, c), w〉, 〈(w, c), 3〉, 〈(w, e), 0〉, 〈(w, e), 6〉}. It is the first fact that
from this TD1 , there is no i.d.view satisfying �TD1 =≺1: Indeed, if there was an
i.d.view with �TD1 =≺1, then w would be a decision piece in ≺1, but no feasible
sequence in �TD1 is an extension of 〈(w, c), w〉, a violation of Axiom B2 (Weak
Extension). To avoid this difficulty, we weaken �TDi =≺i into �TDi ⊆≺i in ID3.

With ID3: �TDi ⊆≺i , it is easy to construct an i.d.view for the above example;
both Figs. 5 and 6 satisfy ID3. Thus, we have already multiple i.d.views even if we
require them to satisfy Axioms B1, B2 and N1–N3.

7 If we follow faithfully the interpretation given in Isbell (1957) and Piccione and Rubinstein (1997), then
the memory function of player 1 is Markov, i.e., mR0

1 , for which an i.d.view is quite arbitary.
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4.2 2-Person example

In Example 4.1, we have multiple i.d.views caused by partiality (forgetfulness) in the
memory function. With more players, we will have different problems. To see this,
we consider the objective situation described in Example 3.1.

Suppose that each i has the self-scope perfect-recall memory function mo
i = mS P R

i
over the domain Yi = �o

i . The domain �o
1 of mo

1 has five positions ending with
w0, z1, . . . , z4, and �o

2 of mo
2 has six positions ending with w1, w2, z1, . . . , z4. For

example, mS P R
1 〈w0〉 = 〈w0〉 and mS P R

1 〈(w0, a), (w1, a), z1〉 = 〈(w0, a), z1〉.
Let us specify the behavior patterns σ1 and σ2 so that they take always actions a.

Here, we consider three types of domains of accumulation Di .

Cane domains Dcane
i : Let D1, D2 be the cane domains, e.g., Dcane

1 = {〈w0〉, 〈(w0,

a), (w1, a), z1〉}; neither player has an experience generated by a deviation. Here,
TDcane

1
= {〈w0〉, 〈(w0, a), z1〉} and TDcane

2
= {〈w1〉, 〈(w1, a), z1〉} can be regarded as

i.d.views for 1 and 2 respectively, which are represented as Fig. 7a and b. Each player
i notices the existence of available action b at his decision information piece, i.e., w0
or w1, but he does not know where it leads, since he has no experience of b. If each
continues choosing only action a, this situation remains stable.

Active domains D A
i : Now, suppose that player i has the active domain, each position

of which is obtained by his own deviation:

D A
1 = {〈w0〉, 〈(w0, a), (w1, a), z1〉, 〈(w0, b), (w2, a), z3〉};

D A
2 = {〈(w0, a), w1〉, 〈(w0, a), (w1, a), z1〉, 〈(w0, a), (w1, b), z2〉}.

In this case, TD A
1

= {〈w0〉, 〈(w0, a), z1〉, 〈(w0, b), z3〉} and TD A
2

= {〈w1〉,
〈(w1, a), z1〉, 〈(w1, b), z2〉}. These form i.d.views, described as Fig. 8a and b.

Full domains DF
i = �o

i : As stated above, DF
1 and DF

2 have five and six positions,
and TDF

1
, TDF

2
are given as

TDF
1

= {〈w0〉, 〈(w0, a), z1〉, 〈(w0, a), z2〉, 〈(w0, b), z3〉, 〈(w0, b), z4〉};
TDF

2
= {〈w1〉, 〈(w1, a), z1〉, 〈(w1, b), z2〉, 〈w2〉, 〈(w2, a), z3〉, 〈(w2, b), z4〉}.

Fig. 7 Views for the cane
domain

a b

Fig. 8 Views for the active
domain

a b
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Fig. 9 1’s view for full domain

Fig. 10 2’s view for full domain

These are also regarded as i.d.views, described in Figs. 9 and 10. The former violates
Axiom N2(Determination), and the latter violates Axiom N1(Root).

We did not yet consider equilibrium: A behavioral use of an i.d.view is rather for
decision making/behavior revision before the convergence to an equilibrium point.
After having trials and errors many times and having different individual views, the
situation may come to equilibrium. Inductive game theory does not start with an
equilibrium situation, but may require many repetitions to reach an equilibrium, or
even players may get stuck in a non-equilibrium situation. To study these problems,
we should be careful about each step from trial/error, accumulation of experiences,
inductive derivatives of his view, and behavioral uses. In our discourse, we consider
each of these steps.

Finally, let us consider the full domains with the players’ memories described even
at the other player’s decision pieces: D1 = D2 = �o consisting of all positions in
the protocol �o. Here, we keep the assumption of each player having the perfect
recall memory, but we extend his domain of accumulation to the positions of the
other player. In this way, a player can accumulate memories about the other player.
In this case, the smallest view for each player i is the same as Fig. 4 except for the
other player’s payoffs. We treat the other person’s payoff as personal information. One
source for gaining this type of information is considered in Kaneko and Kline (2009),
where players may switch roles (player’ identities). We show there that the additional
structure for role-switching may actually facilitate the emergence of cooperation.

4.3 Existence of an i.d.view and the structure of i.d.views for a memory kit

The existence of an i.d.view is guaranteed with our weakened ID3. Let (�o,mo) be
any objective description. The theorem will be proved in the end of this section.

Theorem 4.1 (Existence of an i.d.view): Let Di be any domain of accumulation.
Then, there exists an i.d.view for the memory kit TDi obtained from Di and mo

i .

As seen in Example 4.1, the multiplicity of i.d.views is an inevitable consequence
of our ID3. It comes from various different ways of cutting and extending the memory
threads in his memory kit. In fact, for each memory kit, there are a countably infinite
number of i.d.views. This can be seen by observing that once we have an i.d.view, we
can construct another by adding the same decision piece to the front of each maxi-
mal sequence in the view. This implies that great many supersets of �TDi constitute
i.d.views. Our next task is to find precisely what shapes they might take.
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Let F be a finite subset of
⋃∞

m=0((W
o × Ao)m × W o). We say that a superset F

of �TDi is conservative iff for each 〈(w1, a1), . . . , (wm, am), wm+1〉 ∈ F, w1, . . . ,

wm+1 occur in �TDi and at ∈ Ao
wt

for t = 1, . . . ,m. We note by ID1 and ID2 that if
(�i ,mi ) is an i.d.view, then ≺i is a conservative superset of �TDi .

Then, we have the following additional result.

Lemma 4.2 Let F be a conservative superset of �TDi . Then, there is at most one
i.d.view from TDi with ≺i= F.

Proof Suppose that (�i ,mi ) = (W i , Ai ,≺i , (π i , N i ), hi ,mi ) and (�′i ,m′i ) =
(W ′i , A′i ,≺′i , (π ′i , N ′i ), hi ′ ,m′i ) are both i.d.views from TDi with ≺i=≺′i= F . By
IP3, W i = W ′i and Ai = A′i . Since, (W ′i , A′i ,≺′i ) = (W i , Ai ,≺i ), conditions ID4,
ID5, and ID6 imply that (π i , hi ,mi ) = (π ′i , h′i ,m′i ). ��

This result is in sharp contrast with Kaneko and Kline (2008a), where an i.d.view
is defined in terms of an extensive game. There we met another type of multiplicity
caused by the hypothetical elements of nodes and branches. The use of an informa-
tion protocol enables us to avoid this problem, which will be mentioned in the end of
Section 5.1.

The next theorem gives a necessary and sufficient condition for a conservative sup-
erset of �TDi to be an i.d.view. Essentially, condition (i) corresponds to Axiom B1
and condition (ii) to Axiom B2. Thus, we have a direct way to check whether or
not a conservative superset F of TDi will form an i.d.view. Applying this theorem to
Example 4.1, we can find more i.d.views.

Theorem 4.3 (Conditions for an i.d.view): Let F be a conservative superset of�TDi .
Then, there is an i.d.view (�i ,mi ) = (W i , Ai ,≺i , (π i , N i ), hi ,mi ) from TDi with
≺i= F if and only if

(i) F = �F;
(ii) w ∈ W oE for any maximal sequence 〈ξ,w〉 ∈ F.

Proof (Only-if): Let (�i ,mi ) = (W i , Ai ,≺i , (π i , N i ), hi ,mi ) be an i.d.view from
TDi with ≺i= F . Then (i) holds by Axiom B1. Consider (ii). Let 〈ξ,w〉 be a maximal
sequence in F(=≺i ). Since �i is a basic protocol, 〈ξ,w〉 must be an endposition in
�i by Lemma 3.1. Hence w ∈ W i E and by ID1, w ∈ W oE .

(If): Suppose that (i) and (ii) hold. Then we define W i = {w ∈ W o : w occurs in
F} , Ai = {a ∈ Ao : a occurs in F}, and ≺i= F .

First, we show Axioms B1 and B2 for (W i , Ai ,≺i ). By (i), we have Axiom B1.
Consider Axiom B2. Let 〈ξ,w〉 ∈≺i and w ∈ W i D . Since F is conservative upon

TDi , we have w ∈ W oD . Thus, by (ii), there can be no maximal sequence in ≺i= F
ending with w. Hence, ≺i has some feasible sequence 〈η, (w, c), v〉 so that both
〈η,w〉 and 〈η, (w, c), v〉 are supersequences of 〈ξ,w〉. By Axiom B1, 〈ξ, (w, c), v〉
is a feasible sequence. Thus, we have Axiom B2 for �i .

Next, we show that the conditions ID1 to ID6 are satisfied. The first part of ID1
follows from the supposition that F is conservative upon TDi . It follows from (ii) and
B2 that W i D ⊆ W oD and W i E ⊆ W oE . Condition ID2 follows from conservative-
ness. Condition ID3 follows from F ⊇ �TDi . Since ID1, ID2 and ID3 are satisfied,
π i , hi , and mi are uniquely determined by ID4, ID5, and ID6. ��

123



46 M. Kaneko, J. J. Kline

Fig. 11 In correct
reconstruction

Under a weak additional condition, we can extend Theorem 4.1 to obtain an i.d.view
satisfying Axioms N1, N2 and N3.

Theorem 4.4 (Existence of a full i.d.view): Assume that Di contains at least one deci-
sion piece w with

∣
∣Ao
w

∣
∣ ≥ 2. There is an i.d.view from TDi satisfying Axioms N1, N2

and N3.

This theorem may generate an unnatural view: For example, the memory kit TDF
1

in Sect. 4.2 has an i.d.view with B1, B2 and N1-N3, described in Fig. 11. We can,
however, prove8 Theorem 4.4, using this method of extending a given memory kit
TDi .

Proof of Theorem 4.1 We construct the set F satisfying the conditions (i) and (ii) of
Theorem 4.3.

Consider G := {〈ξ,w〉 ∈ TDi : 〈ξ,w〉 is a maximal thread in TDi and w ∈ W oD}.
If G = ∅, then we let F = �TDi . This F satisfies (i) and (ii).

Suppose G �= ∅. Then this F cannot directly be used for ≺, since ID1, particu-
larly, W i E ⊆ W oE is violated. To overcome this difficulty, we extend each 〈ξ,w〉 ∈ G
slightly to meet ID1. For each 〈ξ,w〉 ∈ G, we choose an action a〈ξ,w〉 ∈ Ao

w, and
denote the set of those a〈ξ,w〉’s by AG .By (12), Di has at least one endposition 〈ξ,we〉.
We extend TDi to T ′

Di
as follows:

T ′
Di

= TDi ∪ {〈ξ, (w, a〈ξ,w〉), we〉 : 〈ξ,w〉 ∈ G
}
. (14)

This set T ′
Di

is constructed so that every maximal feasible sequence ends with some
endpiece, that is,

w ∈ W oE for any maximal sequence 〈ξ,w〉 in T ′
Di
. (15)

We let F = �T ′
Di
. Then, (i) holds and (ii) follows (15). ��

5 Comparisons of views

We have the existence of an i.d.view for a given memory kit TDi . As stated above,
Definition 4.1 allows us to have a countably infinite number of i.d.views. A player
often discriminates between views in some ways. One is a criterion to choose a small
view. In this section, we consider “smallness” of a view, and also some comparisons
of views based on the length of recall-k. In Sect. 8, we will consider some other ways
for discriminating between views.

8 A proof is found in http://www.sk.tsukuba.ac.jp/SSM/libraries/pdf1201/1207.pdf.
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Let (�i ,mi ), (�′i ,m′i ) be two i.d.views from a memory kit TDi . We say that
(�i ,mi ) is smaller than (�′i ,m′i ) iff

≺i⊆≺′i . (16)

An i.d.view (�i ,mi ) is minimal iff no i.d.view is strictly smaller than (�i ,mi ), and is
the smallest iff it is smaller than every i.d.view from TDi . If the smallest view exists,
it is unique. Since an i.d.view is finite, it follows from Theorem 4.1 that there exists a
minimal i.d.view for any TDi . On the other hand, when there are more than one min-
imal views, the smallest view does not exist. In Example 4.1, the protocols of Fig. 5
and 6 are both minimal.

The notion of “smallness” is based on the idea of not using more sequences than
what are needed, which is the criterion of the economy of thought (Occam’s Razor).
We have some other criteria for smallness different from (16), e.g., the cardinality
| ≺i |. We can compare any two views by | ≺i |, but the cardinality ignores the
contents of the sequences, while (16) captures those contents.

There are some clear-cut cases to have the smallest i.d.view. A simple case is to
have an i.d.view (�i ,mi ) with ≺i= �TDi . We state this fact as the next lemma.

Lemma 5.1 Let (�i ,mi ) = (W i , Ai ,≺i , (π i , N i ), hi ,mi ) be an i.d.view from a
memory kit TDi . If ≺i= �TDi , then (�i ,mi ) is the smallest i.d.view for TDi .

In all the examples in Sect. 4.2, we have ≺i= �TDi . We see from them that min-
imal i.d.views often violate some of Axioms N1–N3. On the other hand, we find in
Example 4.1 that some minimal i.d.views with �TDi �≺i satisfy N1–N3.

A necessary and sufficient condition for the existence of an i.d.view with ≺i = �TDi

is given in the following corollary of Theorem 4.3.

Corollary 5.2 Let TDi be a memory kit. There is an i.d.view for TDi with ≺i= �TDi

if and only if w ∈ W oE for any maximal thread 〈ξ,w〉 in TDi .

Proof This follows from Theorem 4.3. Indeed, if there is an i.d.view for TDi with
≺i= �TDi , then condition (ii) of Theorem 4.3 is the latter statement. Conversely, if
the latter holds, then by taking F = �TDi for Theorem 4.3, we have an i.d.view for
TDi with ≺i= �TDi . ��

Kaneko and Kline (2007, 2008a,b) focused on the self-scope perfect-recall memory
function mS P R

i and used the strict definition ≺i= �TDi for an i.d.view. Here, a per-
fect-recall (not necessarily, self-scope) memory function mP R

i determines the smallest
i.d.view on any closed domain.

Corollary 5.3 Let TDi be the memory kit of player i obtained from mo
i = mP R

i on a
closed domain Di . There is the smallest i.d.view from TDi with ≺i= �TDi

Proof It suffices to show the latter part of Corollary 5.2 holds. Let 〈ξ,w〉 be any maxi-
mal thread in TDi . By the definition of TDi ,m

o
i 〈η,w〉 = 〈ξ,w〉 for some 〈η,w〉 ∈ Di .

Since mo
i = mP R

i , we have mo
i 〈η,w〉 = 〈ξ,w〉 = 〈η,w〉i . Since Di is closed, we

find some endposition 〈ζ, u〉 ∈ Di such that 〈η,w〉 is an initial segment of 〈ζ, u〉.
However, since 〈ξ,w〉 is maximal in TDi , we have w = u ∈ W oE . ��
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Remark on an advantage of information protocols over extensive games: It is now
apt to mention an advantage of the theory of information protocols over extensive
games. If we adopt the theory of extensive games, comparison between two extensive
games takes a quite different form from (16), since its primitives such as nodes and
branches are hypothetical additions to observed information pieces. In Kaneko and
Kline (2008a), this comparison is formulated by means of some structure-preserving
functions, which is more complicated than (16). The theory of information protocols
has this advantage in addition to its simpler axiomatic nature.

We now consider the recall-k memory function of a player and the associated
i.d.views for it. We fix the domain Yi of player i and his domain of accumulation Di .
We are interested in how the i.d.views change when the length k of recall-k increases.
If his memory ability is very weak, e.g., k = 0 or k = 1, then we might expect a great
multiplicity of minimal i.d.views. However, as his ability gets stronger, the number of
minimal i.d.views decreases which is stated as the following result.

Lemma 5.4 (Higher recall reduces possibilities): Let TDi , T ′
Di

be the memory kits
obtained from the recall-k, recall-k′ memory functions. If k > k′, then every i.d.view
for TDi is an i.d.view for T ′

Di
.

Proof Let (�i ,mi ) be an i.d.view for TDi . We show that (�i ,mi ) is also an i.d.view
for T ′

Di
. Since ≺i⊇ �TDi by ID3 for TDi and �TDi ⊇ �T ′

Di
by k > k′, we have

≺i⊇ �T ′
Di
, i.e., ID3 for T ′

Di
. Since w is the last piece in mRk〈ξ,w〉 and mRk′ 〈ξ,w〉,

we have {w ∈ W o : w occurs in TDi } = {w ∈ W o : w occurs in T ′
Di

}. Thus, ID1,
ID2, ID4, ID5, and ID6 for T ′

Di
follow directly from the corresponding conditions

for TDi . ��
The smallest i.d.view for a perfect-recall memory function mo

i = mP R
i on a closed

domain was given in Corollary 5.3. By Lemma 5.4, this view is also a view for any
level of recall. To state this fact formally, we refer to this i.d.view as the PR-view for
Di denoted by (�R R,mP I ), where the set of feasible sequences ≺P R is defined to be
�{mP R

i 〈ξ,w〉 : 〈ξ,w〉 ∈ Di }. The closedness of Di is sufficient for the PR-view to
be an i.d.view.

Corollary 5.5 (PR-view is an i.d.view for any Recall-k memory function): Let mo
i be

the recall-k memory function mRk
i (k ≥ 0) on a closed domain Di for player i . Then

the PR-view (�R P ,mP I ) for Di is an i.d.view for TDi .

6 Kuhn’s distinguishability condition

In the theory of extensive games, Kuhn Kuhn (1953) gave a mathematical condition
on information sets, which is called “perfect recall” in the game theory literature. In
our theory, however, it is no more than an attribute of information pieces and histories.
It is formulated as follows: An information protocol � satisfies the distinguishability
condition for player i iff for any 〈ξ,w〉, 〈η, v〉 ∈ Yi ,

〈ξ,w〉i �= 〈η, v〉i implies w �= v. (17)
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When Yi = �o, (17) is the converse of Axiom N2 (Determination). It states that when
two positions have different personal histories up to Yi , some clue to differentiate the
histories is included in the current pieces.9 It does not express player i’s recall ability.
Nevertheless, an included clue helps the player avoid unintended concatenations of
memory threads in constructing an i.d.view. We have the following theorem, which
will be proved in the end of this section.

Theorem 6.1 (Smallest under distinguishability): Let (17) hold for player i in �o,
and mo

i = mRk
i for k ≥ 1. Let Di be a closed domain. The PR-view (�P R,mP I ) is

the smallest i.d.view for TDi among the i.d.views for TDi satisfying (17).

We will use Mike’s bike to explore this result. Consider the full domain case of
Mike’s bike with recall-1. Then, (17) is violated since he receives the same piece at
several lattice points. Suppose, however, that we give Mike a distance meter, and we
skew the town so that the distance from SW to each lattice point differs. Let d〈ξ,M〉 be
the distance through the path 〈ξ,M〉. Then the new information piece Mike receives
at each lattice point is described as:

M ∧ d〈ξ,M〉. (18)

With the distance meter and skewed town, Mike receives a different information piece
at each lattice point after each history to that lattice point,10 and so (17) is satisfied. We
remind the reader of the remark on Mike’s bike, at the and of Sect. 3.1, which describes
some difference between an IP and the lattice structure of a map. Since a lattice point in
Mike’s bike may be reached by two different histories, the corresponding information
protocol will have multiple histories for a given lattice point. The distinguishability
condition requires these histories can be distinguished.

When Mike has only recall-1 ability with no distance meter, he finds various pos-
sible manners to connect his memory threads. However, with a distance meter, he can
distinguish between each history, and find a unique smallest way to connect his mem-
ory threads. In fact, this corresponds to the true map. On the other hand, he cannot
find the unique smallest view with the recall-0 memory function.

Consider another example of an information piece. Let the information piece(s)11

at each lattice point describe the complete history to it; for example, let Mike reach the
northeast M through the path 〈ξ,M〉 = 〈(SW, e), (S, n), (M, e), (M, n),M〉 accord-
ing to the above description. Now we assume that, instead of receiving just M , he

9 We find some analogy between this idea and the Eve-hypothesis in the recent biological antholopology.
It is based on the assumption that some different antholopological histories inherited through women can
be distinguished by some differences in their current mitochondoria. See Mithen (1996).
10 We remind the reader of the remark on Mike’s bike at the and of Sect. 3.1 which describes some dis-
tance between an IP and the lattice structure of a map. Since a lattice point in Mike’s bike may be reached
by two different histories, the corresponding information protocol will have multiple histories for a given
lattice point. The distinguishability condition requires these histories, and not just the lattice points, to be
distinguished.
11 The use of piece(s) is caused by multiple paths to the same lattice point.
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receives the information piece

(SW, e) ∧ (S, n) ∧ (M, e) ∧ (M, n) ∧ M. (19)

This piece contains all information about his previous moves and so it may be inter-
preted as expressing “perfect recall”. The entire history about his choices and lattice
locations are recorded in the present information piece describe by (19), but Mike does
not need to recall his past memories.

Although both (18) and (19) are entirely different, both satisfy (17). The common
property in these examples, captured by (17), is that these pieces are distinguished.
Hence, we call it “distinguishability”, rather than “perfect recall”.

We will use the following lemmas in the proof of Theorem 6.1. Now, we fix the
objective situation (�o,mo) and a closed domain Di .

Lemma 6.2 If �o satisfies (17) for player i , then so does the PR-view �P R.

Proof Let 〈ξ,w〉, 〈η, v〉 be decision-positions in �P R with 〈ξ,w〉 �= 〈η, v〉. Since
�P R is the PR-view, there are two positions 〈ξ ′, w〉, 〈η′, v〉 ∈ �o such that 〈ξ ′, w〉i =
〈ξ,w〉 and 〈η′, v〉i = 〈η, v〉. Since 〈ξ,w〉 �= 〈η, v〉, we have 〈ξ ′, w〉 �= 〈η′, v〉. By
(17) for �o, we have w �= v. ��

Condition (17) guarantees that the information pieces represent the positions.

Lemma 6.3 Let (�i ,mi ) be a personal view of player i satisfying (17). Then, the
function ϕ defined by ϕ〈ξ,w〉 = w for all 〈ξ,w〉 ∈ �i is a bijection from �i to W i .

Proof By IP3 for �i , ϕ is a surjection. Let 〈ξ,w〉, 〈η, v〉 ∈ �i with 〈ξ,w〉 �= 〈η, v〉.
By (17), we have w �= v. ��
Proof of Theorem 6.1 Since Di is a closed domain and mo

i = mRk
i (k ≥ 1),

(�P R,mP I ) is an i.d.view for TDi by Corollary 5.5 and it satisfies (17) by Lemma 6.2.
Now, let (�i ,mi ) be any i.d.view (�i ,mi ) for TDi satisfying (17). Since �i and
�P R are i.d.views for TDi , we have W i = W P R by ID1. By Lemma 6.3, for each
w ∈ W i = W P R , there is a unique position to w in �P R , and correspondingly, a
unique position to w in �i . We prove ≺P R= ��P R ⊆ ��i =≺i .

We show by induction on the length of positions that for each w ∈ W P R , the
position 〈ξ,w〉 to w in �P R is a subsequence of the position 〈η,w〉 to w in �i . This
implies ��P R ⊆ ��i .

For the base case, let 〈ξ,w〉 be a position of length 1 tow in�P R , i.e., 〈η,w〉 = 〈w〉.
The unique position 〈η,w〉 to w in �i is a supersequence of 〈w〉.

Next, let 〈ξ,w〉 = 〈(w1, a1), . . . , (wm−1, am−1), wm〉be a position of length m > 1
in �P R . The inductive hypothesis is that the position 〈ξ ′, wm−1〉 = 〈(w1, a1), . . . ,

(wm−2, am−2), wm−1〉 in �P R is a subsequence of the position 〈η′, wm−1〉 in �i .
Hence:

〈ξ,wm〉 = 〈ξ ′, (wm−1, am−1), wm〉 is a subsequence of 〈η′, (wm−1, am−1), wm〉.
(20)

123



Partial memories, inductively derived views 51

Fig. 12 2’s PR-view

Fig. 13 Another view with
distinguishability

Since player i has the recall-k(k ≥ 1) memory function on a closed domain Di ,
the sequence 〈(wm−1, am−1), wm〉 ∈ �TDi . By IP3, 〈(wm−1, am−1), wm〉 is a subse-
quence of the position 〈η,wm〉 in �i . This together with the uniqueness of a position
for each piece by Lemma 6.3 implies that the position 〈η′, wm−1〉 is an initial segment
of 〈η,wm〉. Hence, there is a w′ ∈ W i such that 〈η′, (wm−1, am−1), w

′〉 is an ini-
tial segment of 〈η,wm〉. Hence, 〈η′, (wm−1, am−1), wm〉 is a subsequence of 〈η,wm〉.
By (20), the position 〈ξ,wm〉 in �P R is a subsequence of 〈η,wm〉 in �i . ��

We finish this section with two remarks about Theorem 6.1. First, by Lemma 6.3,
the cardinalities of some �i satisfying (17) and �P R are the same as that of W i =
W P R . This appears to imply that the PR-view �P R is the only view satisfying (17).
However, we have a counterexample. Consider Example 3.1 with Y2 = �o

2 and mS P R
2 .

The PR-view for player 2 is given as Fig. 12. The protocol of Fig. 13 is another i.d.view
for TD2 satisfying (17), and it is strictly larger than the PR-view. The second remark
is that Theorem 6.1 states only that the PR-view (�P R,mP I ) is the smallest among
those with (17). We may find a counterexample with a smaller view that violates (17).

7 Mike’s bike commuting (2): evolution of a view

A player’s i.d.view evolves together with his memory kit over time as he accumulates
more experiences. This evolution process is related to his memory ability and his
behavioral tendencies. Here we explore this process using Mike’s bike commuting.

From the cane domain to skinny domains: Suppose he has the memory function of
recall-1. In the beginning, his experienced domain Dcane

1 is simply the regular route.
One i.d.view (�1,m1) is this regular route together with the perfect-information mem-
ory function m1 = mP I , which is depicted in Fig. 14a.

After some time, the domain of accumulation has grown by one additional route
with the bold dotted arrows through the southwest M. The new domain D′

1 is given as
Dcane

1 ∪ the set of initial segments of 〈(SW, n), (W, e), (M, n), (M, n), (N, e), (N, e),
N E〉, and is depicted in Fig. 3b. Here, the memory kit TD′

1
is given as

TD′
1

= TDcane
1

∪ {〈(W, e),M〉, 〈(M, n),M〉, 〈(M, n), N 〉}
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Fig. 14 The cane and skinny
views
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This kit leads him to develop the expanded i.d.view of Fig. 3b.12

Stagnation: If he tries another deviation from the north W, his experienced domain
gains yet more positions and is given as D

′′
1 = D′

1∪the set of initial segments of
〈(SW, n), (W, n), (W, e), (M, n), (N, e), (N, e), N E〉. See Fig. 14b. Since, however,
the additional 〈(W, e),M〉 from the north W is already in memory kit TD′

1
, this does

not change his memory kit, i.e., TD′
1

= TD′′
1
. Hence, his i.d.view may be stagnant.

If his memory function is recall-2, then the newest memory kit TD′′
1

is strictly larger
than the previous TD′

1
and the original TDcane

1
.

From skinny domain to the full domain: After many commutes, he has effectively
experienced all places in the town. Consider the possible i.d.views when his memory
is recall-k for small k.

Suppose that Mike has recall-1. First, the IP corresponding to the true map (Fig. 3a)
and that corresponding to the the larger one (Fig. 15a) are possible i.d.views. How-
ever, there are several minimal views, which are obtained by the procedure given in
the proof of Theorem 4.1. Even if we restrict our attention to minimal views with the
non-basic axioms N1–N3, we would find that Fig. 3a is not yet a minimal one. In this
case, however, recall-2 is enough to guarantee that Fig. 3a corresponds to the smallest
view.

If we allow him to have a stronger memory, say recall-k but k ≤ 4, then there is
still a minimal i.d.view smaller than Fig. 3a. If he has memory function of recall-5 or
higher (perfect-recall), then his smallest view corresponds to the true map.

Thus, we have seen that additional requirements (memory, trials, or other informa-
tion) may help the player to obtain a better view.

True or imaginary structure: Let us return to the skinny domain case. Even though he
trusts his own memory kit TDcane

1
, there is another i.d.view having more repetitions of

W and N . A possible i.d.view is depicted in Fig. 15b.
We can see this fact in the other way around: Suppose that the true town has the

5 × 4 street structure depicted as Fig. 15a. When Mike has the memory function of

12 Here, we represent this set of positions by the map of the form Fig. 3b. The positions themselves need
not imply this representation. If Mike does this practice, he uses some additional assumptions on the town.
Here, we simply use the map representation for simplicity.
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Fig. 15 True and imaginary
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recall-1, the memory kit is the same as the previous memory kit TDcane
1

depicted in
Fig. 14a. Hence, his i.d.view corresponding to Fig. 14a is an i.d.view in this case.

This interchangeability of the “true structure” and “an i.d.view” holds even when
we go to the full domain. This fact means that with partiality in the memory ability,
the truth is difficult to find.

8 Two types of behavioral uses of i.d.views

Now, a player brings and uses his view in the objective situation. We consider two
such uses here. In Sect. 8.1, we study the problem of him checking his i.d.view with
new experiences in the objective situation. We show that only the PR-view survives
this checking when he checks his view in a sufficiently broad manner. In Sect. 8.2,
we study how he may use his view to construct an optimal strategy for the objective
situation. While his view may violate Axioms N1–N3, for optimal decision making,
only the violation of N2 causes a serious problem.

8.1 Behavioral checking of i.d.views

When the memory function is partial, there may be multiple i.d.views for a player
even if he focuses on minimal i.d.views. Multiplicity of i.d.views could be a serious
problem if they suggest different behaviors. In this case, he may start looking for more
clues to discriminate between those views. Here, we consider how he might use his
new experiences to reject or accept some views. Throughout this section, we assume
a closed and fixed domain of accumulation Di .

Suppose that player i has an i.d.view �i , while keeping his regular behavior and
making new trials within the domain Di of accumulation. His memory is now aided
by his view �i : At a position 〈ξ,w〉 in (�o,mo), he experiences his local memory
mo

i 〈ξ,w〉 and considers its relation to his view �i . He tries to identify each of his
experiences with a position in his subjective view �i . Also, he checks successive
positions in �i with successive experiences. In this process, he may find some inco-
herence between his view�i and experiences. If no such incoherence exists between
them, he keeps (�i ,mi ).
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Checking requires disciplined efforts for player i. It incurs large mental costs, which
is contradictory to our basic presumption that the player has limited ability, time, and
energy. Nevertheless, this is a matter of degree. Here, we explore the case where he is
disciplined and has enough time and energy for sufficient checking. In this sense, the
consideration here should be regarded as a limiting case.

To describe the above idea of successive checking, we define immediate successor-
ship relations in�o (actually in Di ) and�i . We define the relation 〈ξ,w〉 <oI

a 〈η, v〉
in Di iff 〈η, v〉 is an immediate successor of 〈ξ,w〉 in Di with the choice of action a at
w. Likewise, 〈ξ ′, w′〉 <i I

a 〈η′, v′〉 is defined in�i , in which case, 〈ξ ′, w′〉 is, directly,
the immediate predecessor position of 〈η′, v′〉 with the choice a at 〈ξ ′, w′〉.

We say that player i cannot falsify (�i ,mi ) with his experiences iff there is a
function ψ from Di to the set of positions �i in �i such that

F0: ψ is a surjection;
F1: for any 〈ξ,w〉 in Di , if ψ〈ξ,w〉 = 〈η, u〉, then w = u;
F2: for any 〈ξ,w〉, 〈ζ, v〉 in Di , 〈ξ,w〉 <oI

a 〈ζ, v〉 if and only ifψ〈ξ,w〉 <i I
a ψ〈ζ, v〉.

The existence of ψ is required from the objective point of view, since player i
does not know the structure of Di . Nevertheless, F0, F1 and F2 describe the stability
of an i.d.view against player i having the ability of effectively falsifying �i by his
experiences. If F0 is violated, then he realizes after some time that some position in
�i never occurs. Condition F1 means that he identifies his currently received piece
u with some position ending with u in �i . Condition F2 is the requirement of player
i’s successive checking of his current and next positions in the objective �o and in
his view �i . The if-part is more subtle than the only-if part: every pair of successive
experiences predicted by his view has an objective counterpart in Di . This, together
with F0 and F1, eliminates the i.d.view of Fig. 13.

The process of successive checking goes as follows. When he receives the first
piece w in �o, he finds the minimal position 〈w〉 in �i . When he receives the next
piece v after action a at w, he finds the immediate successor 〈(w, a), v〉 of 〈w〉 in�i .

He continues this process, and when F0–F2 are satisfied, he finds no difficulties, and
otherwise, he would find something wrong with his present view.

We say that the memory function mo
i is Yi -correct iff mo

i 〈ξ,w〉 is a subsequence
of 〈ξ,w〉i for all 〈ξ,w〉 ∈ Di . The next theorem states that under the assumption of
Yi -correctness on mo

i , the PR-view is the only i.d.view that cannot be falsified, which
will be proved in the end of this subsection.

Theorem 8.1 (Falsification and the PR-view). Let Di be a closed domain and mo
i a

Yi -correct memory function. Let (�i ,mi ) be an i.d.view from a memory kit TDi . Then
(�i ,mi ) cannot be falsified with experiences if and only if (�i ,mi ) is the PR-view.

We now consider one important implication of Theorem 8.1. Suppose that player
i considers his possible i.d.views from his memory kit and proceeds in the following
way:

P1: his i.d.views (�i1,mi1), (�i2,mi2), . . . are enumerated;13

13 Note that he does not need to enumerate all of these views before this process. Instead, he needs only
some algorithm to have a “next” candidate from the present one.
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P2: If he brings the i.d.view (�ik,mik) with him to the objective situation and
finds some incoherence with experiences, then he replaces it with the next view
(�i(k+1),mi(k+1)).

If F0-F2 can be applied without errors, a consequence of Theorem 8.1 is that the above
process terminates with the PR-view.

Nevertheless, the process of falsification may fail with some difficulties. As far
as (�i ,mi ) is an i.d.view from the memory kit TDi , we find a function ψ satisfy-
ing requirement F1. Hence, we restrict our attention to a function ψ satisfying F1:
Falsification itself is characterized by the negation of F0 or F2. The falsification of
F2 is clear-cut: While he has received two successive memory threads mo

i 〈ξ,w〉 and
mo

i 〈ζ, v〉 with action a at w,ψ〈ξ,w〉 and ψ〈ζ, v〉 do not successively occur in �i .

On the other hand, falsification of F0 is more problematic: Trial-error has stochastic
components, as described in Akiyama et al. (2008). Even though some position in�ik

has not occurred after many repetitions, player i may remain uncertain about whether
it will ever occur. Here, he needs to make a doxastic decision (cf. Plato 1989) or a
statistical decision to reject the present view (�ik,mik). There may be two types of
errors as in statistical inference (cf., Rohatgi 1984/2003, p. 708). A Type I error occurs
when player i waits for every position in �ik to occur and incorrectly does not reject
the present (incorrect) view, and a Type II error occurs if he does not wait long enough
for some position in (�ik,mik) and incorrectly rejects the (correct) PR-view. But once
player i makes a doxastic decision that his PR-view is not falsified, it would be stable.

In Example 4.1 (absent-minded driver game), player 1 has various minimal i.d.view
such as Fig. 6. Now, he brings this view in his mind when he drives. Then, unless he
continues choosing c, he would not find anything wrong. But once he deviates to take
action e, he would find his view could be incorrect. He may use a different one (or he
may revise it in some way).

Proof of Theorem 8.1 (If): Let (�i ,mi ) be the PR-view on a closed domain Di . Then
≺i is given as�{〈ξ,w〉i : 〈ξ,w〉 ∈ Di }, equivalently, the set of positions in�i is�i =
{〈ξ,w〉i : 〈ξ,w〉 ∈ Di }.We define ψ by ψ〈ξ,w〉 = 〈ξ,w〉i for all 〈ξ,w〉 ∈ Di .Then,
ψ satisfies F0 and F1. Consider F2. Suppose that 〈ξ,w〉, 〈η, v〉 in Di and 〈ξ,w〉 <oI

a
〈η, v〉. Then, 〈ξ,w〉i , 〈η, v〉i are positions in�i andψ〈ξ,w〉 = 〈ξ,w〉i <

i I
a 〈η, v〉i =

ψ〈η, v〉. The converse can be seen by tracing back this argument.
(Only-If): Suppose that (�i ,mi ) cannot be falsified. Then there is a functionψ from

Di to �i satisfying F0, F1, and F2. We show by induction that ψ〈ξ,w〉 = 〈ξ,w〉i for
all 〈ξ,w〉 ∈ Di .

Let 〈ξ,w〉 be a minimal position in Di , i.e., no proper initial segment of 〈ξ,w〉 is in
Di . Then, 〈ξ,w〉i = 〈w〉 since Di is closed. Thus, mo

i 〈ξ,w〉 = 〈w〉 by Yi -correctness.
By F1,ψ〈ξ,w〉 = 〈(w1, a1), . . . , (wm, am), u〉 satisfies u = w. Now, suppose, on the
contrary, that ψ〈ξ,w〉 �= 〈ξ,w〉i = 〈w〉, i.e., m ≥ 1. Since ψ is a surjection to �i

by F0, there is a 〈η, v〉 in Di such that ψ〈η, v〉 = 〈(w1, a1), . . . , (wm−1, am−1), wm〉.
Then,ψ〈η, v〉 <i I

am
ψ〈ξ,w〉. Hence, by F2, we have 〈η, v〉 <oI

am
〈ξ,w〉,which contra-

dicts the assumption that 〈ξ,w〉 is a minimal position in Di . Hence, ψ〈ξ,w〉 = 〈w〉.
Now, we suppose the inductive hypothesis that ψ〈ξ,w〉 = 〈ξ,w〉i . For conve-

nience, we write 〈ξ,w〉i as 〈ξi , w〉. Let 〈η, v〉 be the next position in Di reached
after taking a at w, i.e., 〈ξ,w〉 <oI

a 〈η, v〉. Then, 〈η, v〉i = 〈ξi , (w, a), v〉. By F2,
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ψ〈ξ,w〉 <i I
a ψ〈η, v〉. It follows from this and the inductive hypothesis thatψ〈η, v〉 =

〈ξi , (w, a), u〉 for some u. Since u = v by F1, we have ψ〈η, v〉 = 〈ξi , (w, a), v〉 =
〈η, v〉i . ��

8.2 Violations of N1–N3 and their effects on decision making

The i.d.view he settles on may not be a full information protocol, as seen in Sect. 4.2. In
this section, we discuss problems related to this. Suppose that player i finds an i.d.view
(�i ,mi ) by some method and decides to use it for his decision making. Then, this
subjective view�i may violate Axioms N1–N3 even if it is the PR-view. We consider
the problems arising from each violation:

Violation of N1(Root): The view has several trees;
Violation of N2(Determination): An exhaustive history does not determine a unique
present information piece;
Violation of N3(History-independent extension): Some available actions at a position
are not available at a position ending with the same information piece.

Since those violations are caused for different reasons, we should connect difficul-
ties in decision making with the original objective situations causing the violations.

The violations of N1 and N2 may be caused by partial memory and the ignorance
of another player, which are seen in Figs. 9 and 10. The main cause for the violation
of N3 is the partiality of the domain Di . It is easy to find an example of Di and a
memory function so that an i.d.view violates N3. See Kaneko and Kline (2007) for
such-examples in the context of extensive games.

Now, we consider potential difficulties in decision making. If N3 is violated, the
player should simply ignore the unused actions and he will face no serious problem in
decision making. The violation of N2 is more serious as seen in Fig. 9, where player
1 may not be able to decide between a and b. The violation of N1 may appear also to
create difficulties with decision making, but the analysis below shows that this is not
the case.

Let (�i ,mi ) be a personal view of player i, and let N i be the player set of �i . In
(�i ,mi ), the definition of a strategy needs a slight change: a strategy s j for player
j ∈ N i is defined by (10) and (21): for any position 〈ξ, v〉 ∈ �i D

j ,

s j 〈ξ, v〉 ∈
{

a : 〈ξ, (v, a), u〉 is a position for some u in �i
}
. (21)

Since (�i ,mi ) is a subjective view, we use a different letter to denote a strategy.
Now, we denote a profile of strategies for N i by s = (s j ) j∈Ni . Then, we say that a
position 〈ξ, (vk, ak), . . . , (vm, am), vm+1〉 is s-compatible with a position 〈ξ, vk〉 iff
sπ i (vk )

〈ξ, vk〉 = ak and sπ i (vt )
〈ξ, (vk, ak), . . . , (vt−1, at−1), vt 〉 = at for t = k +

1, . . . ,m.
Since Axiom N2 guarantees that for any t = k + 1, . . . ,m, 〈ξ, (vk−1, ak−1), . . . ,

(vt−1, at−1), vt 〉 and at determine the unique piece vt+1, we have the following.
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Lemma 8.2 (Strategy-determinancy). Let (�i ,mi )be an i.d.view satisfying Axiom N2,
and s = (s j ) j∈Ni a strategy profile. Then, any position 〈ξ, vk〉 uniquely determines
an endposition which is s-compatible with 〈ξ, vk〉.

For a position 〈ξ, v〉 and strategy profile s = (s j ) j∈Ni , we define the conditional
payoff Hi,〈ξ,v〉(s) to be the set of payoffs for player i given at the endpositions that are s-
compatible with 〈ξ, v〉. In the example of Fig. 9, s1(w0) = a gives H1,〈w0〉(s) = {3, 0},
and s′

1(w0) = b gives H1,〈w0〉(s′) = {1, 5}.
Suppose that s−i is fixed. We say that a strategy si is unambiguously optimal at a

position 〈ξ, v〉 iff for any strategy s′
i for player i,

α ∈ Hi,〈ξ,v〉(si , s−i ) and α′ ∈ Hi,〈ξ,v〉(s′
i , s−i ) imply α ≥ α′. (22)

We say that si is unambiguously optimal iff it is unambiguously optimal at all decision
positions 〈ξ, v〉 for player i in�i . These are relative concepts to the given s−i . In other
words, at any decision position of player i , the worst payoff from his given strategy is
at least as good as the best from any alternative. In the example of Fig. 9, no strategy is
unambiguously optimal. Nevertheless, we have a guarantee that such a strategy exists
for any i.d.view satisfying N2.14

Theorem 8.3 (Unambiguous optimality with Axiom N2). Let (�i ,mi ) be an i.d.view
that satisfies Axiom N2, and let s−i be a profile of other players’ strategies. Then, there
is an unambiguously optimal strategy si for player i .

We remark that the theorem uses the fact that the subjective memory function mi

is the perfect-information memory function mP I . As mentioned earlier, since player
i has this view in his mind, the perfect-information memory function makes sense.

We have seen by Fig. 9 that the violation of Axiom N2 presents potential problems
with decision making. If player i has a difficulty in decision making because his view
violates N2, he may try to overcome it in various ways. He may modify his view to
meet Axiom N2 such as in Theorem 4.4. Alternatively, he may use a weaker optimality
criterion such as maximin optimality, i.e., he compares the worst payoffs compatible
with each strategy. Another possibility is to look beyond his memory kit for some
source of this indeterminacy, e.g., the move of an unobserved player.

9 Conclusions

First, we give an overall summary by highlighting the main findings along the steps
given in Sect. 1.3.

Highlight 1: In Kaneko and Kline (2007, 2008a), an inductively derived view is
effectively the same as the memory kit. This paper generalized the definition of an
inductively derived view to allow a larger set of feasible sequences than the accumu-
lated memory kit. This facilitates explorations of partiality in the objective memory
function mo

i .

14 A proof is found in http://www.sk.tsukuba.ac.jp/SSM/libraries/pdf1201/1207.pdf.
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Highlight 2: This generalized definition of an i.d.view allows general existence of an
i.d.view, but there are multiple ones. On the one hand, multiplicity may be regarded
as a cost in that the analysis becomes more complicated. On the other hand, it leads
us to a new frontier of inductive game theory that may help us to understand a variety
of views observed in society.
Highlight 3: We considered minimal/smallest i.d.views. Minimality avoids large
redundant views, but there may still be multiple minimal ones. When mo

i has par-
tiality, minimal views may not capture essential structures in that they are too small.
Highlight 4: Under Kuhn’s distinguishability condition, a player may reach the
PR-view as the smallest. However, it is a demanding requirement for an informa-
tion piece, and also the player is required to be able to analyze the hints hidden in
each piece. In this sense, the result is not necessarily regarded as a resolution of
multiplicity.
Highlight 5: Using Mike’s bike commuting, we have shown that as the experienced
domain is increased with time, a personal view is evolving, i.e., for some time, it is
getting larger. However, he may get stuck with the same view even if he has more
experiences.
Highlight 6: The next step is to check an i.d.view with new experiences in the objec-
tive situation. If he is fortunate, he reaches the PR-view and it becomes stable in the
sense that he notices no incoherence between his view and experiences. However,
it could take a long time to reach the PR-view or he might even reject it or fail to
reach it.
Highlight 7: Even if he takes a view as stable, e.g., the PR-view, he might meet some
difficulties in his decision making. This is caused by the violations of Axioms N1–
N3 for his view. The violation of Axiom N2 is more serious than the others: as long
as Axiom N2 is satisfied, he can use his view for his payoff maximization.

We have many results on each step of the discourse, but there still remain many open
problems. For example, what happens with the later part of this paper when the objec-
tive memory function has more incorrect components? For this problem, computer
simulations may help. Another important problem is how each player gets the other
player’s understanding of the situation. We discuss this problem in Kaneko and Kline
(2009). Nevertheless, treatments of individual experiences as well as individual views
are basic for the further development of the new theory of other players’ thoughts. We
need to consider also interactions between various players’ views and behavior. We
anticipate that these explorations will lead to many new insights on human behavior
and thought in society.
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