
数学（解答例）
[問題 I解答例]

I. (1) 固有方程式を解くことにより，固有値 2, 2, 4を得る．

(2) 例えば，

P =

(
0 1/

√
2 −1/

√
2

1 0 0

0 1/
√
2 1/

√
2

)
, D =

(
2 0 0
0 2 0
0 0 4

)
など．別の組もあり得る．

(3) 上記 (2)で示した行列 Aに関する性質や，計算により，AB = BAが成り立つこと
を示せばよい．

(4) Y ∈ C(D) に対して，X = PY P−1 とすれば，F (X) = Y が成り立ち，さらに
X ∈ C(A)であることが確認でき，題意を得る．

(5) F (X1) = F (X2)の式の両辺の左から P，右から P−1を掛ければ，F の定義より題
意を得る．

(6) X1, X2 ∈ C(A)，α ∈ Rについて，F の定義に従い，F (X1 +X2) と F (αX1)を計算
すれば，題意を得る．

(7) DX = XDを計算することにより，行列X についてDX = XDであることと

x13 = x23 = x31 = x32 = 0

であることが等しいため，上記が題意の条件であることがわかる

(8) 問 (7)の結果から，C(D)の次元は 5である．問 (4) – (6)の結果より，F : C(A) →
C(D)は同型写像である．よってベクトル空間C(A)とC(D)は同型であり，次元も
等しい．C(D)の次元は 5であるので，C(A)の次元も 5である．

C(D) の次元を求める他の方法として，AX − XA = O を直接計算する方法や，
G(A) = AX −XAの表現行列を 3× 3実行列集合の基底E11, E12, . . . , E33に対する
G(E11), G(E12), . . . G(E33)から求め，この行列の核の次元を求める方法などが考え
られる．
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[問題 II解答例]

(1) 　 f(x)は何回も微分可能な場合次の展開式が成り立つ．

f(x) = f(0) +
n∑

k=1

f (k)(0)

k!
xk + o(xn). (1)

ただし，この問題はロピタル定理を使ってもできる．
ここで，limx→0 o(x

n)/xn = 0. この式を使うと, f(x) = sinx, f (1)(x) = cosx, f (2)(x) =

− sinx, f (3)(x) = − cosx.

(a)

sinx = x− x3

6
+ o(x3).

よって，
lim
x→0

sinx− x

x3
= −1

6
.

よって，a0 = 0, a1 = 1, a2 = 0, a3 = −1
6 .

(b)

一方，g(x) =
√
1 + x = (1+ x)1/2. g(1)(x) = 1

2(1+ x)−1/2. g(2)(x) = 1
2 ×

−1
2 (1+ x)−3/2,

g(3)(x) = 1
2 × −1

2 × −3
2 (1 + x)−5/2. したがって，g(x)は以下のように展開できる．

g(x) = 1 +
1

2
x− 1

8
x2 +

1

16
x3 + o(x3).

よって，
lim
x→0

g(x)−
(
1 + 1

2x− 1
8x

2
)

x3
=

1

16
.

b0 = 1, b1 = 1/2, b2 = −1/8, b3 = 1/16.

(c)

(x, y) ̸= (0, 0)について，

∂h(x, y)

∂x
=

(x2 + 2y2)2y − 2xy(2x)

(x2 + 2y2)2
=

4y3 − 2x2y

(x2 + 2y2)2
, (x, y) ̸= (0, 0).

(x, y) = (0, 0)について

∂h(0, 0)

∂x
= lim

δ→0

h(δ, 0)− h(0, 0)

δ
= lim

δ→0

0

δ
= lim

δ→0
0 = 0.
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(2) (a)

B(a+ 1, b) =

∫ 1

0
xa(1− x)b−1dx

=

∫ 1

0
xad− (1− x)b

b

= −xa
(1− x)b

b

∣∣∣∣1
0

+

∫ 1

0

(1− x)b

b
axa−1dx

=
a

b

∫ 1

0
xa−1(1− x)bdx =

a

b
B(a, b+ 1).

(b)

B(a, b+ 1) =

∫ 1

0
xa−1(1− x)bdx

=

∫ 1

0
xa−1(1− x)b−1(1− x)dx

= B(a, b)−
∫ 1

0
xa(1− x)b−1dx

= B(a, b)−B(a+ 1, b).

(c)

x = uv, y = u(1−v)と置くと (u, v) → (x, y)はΩ : 0 ≤ u, 0 ≤ v ≤ 1の内部をD : 0 ≤ x, y

の内部に1対 1に写す．u, vの領域の求め方として，uv > 0とu(1−v) > 0からu > uv > 0

を得る．これをuv > 0と合わせて v > 0を得る．さらにu(1−v) > 0からu > 0, 0 < v < 1

を得る．
i) ヤコビアン

∣∣∣∣∣ ∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣ = −u.

したがって，ヤコビアンの絶対値が uである．
ii) よって

dxdy = ududv.
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∫ ∞

0

∫ ∞

0
e−x−yxa−1yb−1dxdy =

=

∫ ∞

0

∫ 1

0
e−uua−1va−1ub−1(1− v)b−1ududv

=

∫ ∞

0
e−uua+b−1du

∫ 1

0
va−1(1− v)b−1dv

= Γ(a+ b)B(a, b).

よって
Γ(a)Γ(b) = Γ(a+ b)B(a, b).

iii) a = b = 1/2とすると,

Γ(1/2)2 = Γ(1)B(1/2, 1/2).

一方, Γ(1) = 1を容易に確認できる．また，B(1/2, 1/2) = πが与えられているため，
よって ∫ ∞

−∞
e−y2dy =

√
π.

y = z/
√
2と置くと

∫ ∞

−∞

1√
2π

e−z2/2dz = 1

を得る．
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