
Application Offloading based on R-OSGi in
Mobile Cloud Computing

Sen Yang∗, Xiangshun Bei†, Yongbing Zhang‡, Yusheng Ji§

∗‡ Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
† Viterbi School of Engineering, University of Southern California, U.S.A.

§ Information Systems Architecture Science Research Division, National Institute of Informatics, Japan
Email: ∗‡{s1420531, ybzhang}@sk.tsukuba.ac.jp, †xbei@usc.edu, ‡kei@nii.ac.jp

Abstract—In this paper, we proposed and implemented an
offloading mechanism for mobile applications based on the R-
OSGi framework which supports the Java modular component
dynamic services. A mobile application is composed of a
number of modules that are eligible for offloading to be
executed at a remote server on the Internet and executed
at a mobile device. We focused on the problem of how to
transfer some modules of a mobile application to the server
so as to minimize the total execution time of the whole mobile
application. We used a directed tree graph to represent the
relationship between the modules of a mobile application.
Then, we formulated the offloading problem as a combinatorial
optimization problem and proposed two algorithms to solve
the offloading problem for a simple-chain application and
also for a general application. The proposed algorithms were
implemented and examined on the R-OSGi-based framework
and the results show that the proposed algorithms are much
more efficient than both the cases where no offloading is
considered and where all the modules are offloaded to the
server.

I. INTRODUCTION

In recent years due to the advances of cloud computing
and wireless communication technologies, mobile cloud
computing (MCC) has been focused on as a new paradigm
to improve the processing and storage capability of mobile
devices [1], [2], [3]. In MCC, a mobile device can utilize
the rich processing and storage resources of the clouds
to strengthen its processing capacity and increase its data
accessibility. Furthermore, by moving (offloading) some
processing load from a mobile device to the server on the
network can also prolong the device battery lifetime.

Authors in [4], [5] proposed using a two-level architecture
to realize the MCC framework. The first level is the general
cloud infrastructure but the second level consists of a number
of servers, called cloudlets by the authors, that may be much
smaller in size and capacity than the cloud servers and are
allocated in the edge networks, or called the access networks
in the literature, near to the mobile devices. A cloudlet works
as a second-class data center to cache the data needed by the
nearby mobile devices and to process the workload of mobile
devices. In this paper, we propose offloading some workload
of a mobile device to the nearby server over the Internet so
as to minimize the total completion time of an application
that is executed at the mobile device. In particular, given a
condition on which a mobile application is composed of a set

of modules that can be executed remotely at the server, we
attempt to decide which modules should be offloaded to the
server such that the application execution time is minimum.

In research [6], the authors expressed the relationship
between the modules of a mobile application as a directed
chain graph and proposed an offloading approach to de-
termine a series of successive modules on the chain for
offloading. However, if a module has relations with more
than one other module, the relationship between modules
cannot be shown by a simple chain graph. In this paper,
we propose using a directed tree graph to show the the
relationship between modules in a mobile application, and
then formulate the offloading problem as a combinatorial
optimization problem. We propose two offloading algorithms
to solve the offloading problem: one is for a simple chain
application and the other for a general application. In order
to examine the efficiency of the proposed algorithms, we
implemented the offloading algorithms based on the R-
OSGi framework [7] and examined the performance of the
proposed algorithms.

The contributions of this paper can be summarized as
follows. 1) We formulated the problem of how to offload
the modules of a mobile application to the server on the
network as a combinatorial optimization problem. 2) We
proposed an efficient offloading algorithm for a simple-chain
application. It is shown that the offloading happens only
once and furthermore the offloading end point is the last
module on the chain in chain applications. 3) We proposed
an optimal offloading algorithm for a general application. It
is shown that the computational complexity of this algorithm
is proportional to the number of modules in the application.

The remainder of this paper is organized as follows.
In the next section, we summarize the related works. In
Section III, describe the system model used in this paper and
then the system architecture we develop. Then, in Section
IV, formulate the optimal offloading problem and propose
two algorithms to determine the offloading decisions for a
simple chain application and for a general tree application.
In Section V, we shows the details of how we implement
the system based on the R-OSGi framework and the results
obtained from the experiments. Finally, Section VI concludes
the paper.

II. RELATED WORKS

There are some researches [6], [8], [9], [10], [11], [12],
[13] until now related to the computation offloading prob-
lems in MCC. The authors in [8], [10], [11] considered each
computation task as an independent entity and therefore the
offloading decision of each task is performed independently
from others. However, a module of a mobile application may
actually have relations with other modules; for example, a
module may call some other modules with some data or be
called by other modules. Therefore, if a module is offloaded
to the server, the modules with strong relations with the
module may also be better to be offloaded.

In researches [6], [9], [12], [13], the relationship between
the modules of a mobile application is taken into account
in offloading decisions. However, the network congestion is
ignored in order to make the problem tractable [9]. In [6],
[12], the modules of a mobile application are represented
as a simple-chain graph or are assumed to be executed
only in a parallel or a sequential pattern. The drawback
of their approaches is that a general application cannot be
represented correctly by a simple chain or by only a parallel
or a sequential pattern, since it is common that a module
has relations with more than one other module. In [13], the
execution flow of a module-based application is expressed
as a directed graph and the objective is to minimize the
execution time of mobile applications. It is assumed that
a mobile application may have multiple execution flows,
and therefore the offloading problem becomes NP-hard. A
heuristic offloading algorithm was proposed to solve the
offloading problem. In this paper, on the other hand, we
represent the relationship among the modules of a mobile
application using a directed graph and the offloading deci-
sions are made based on how much benefit the offloading
can obtain.

It is shown in researches [4], [5], [14], that by allocating
some cloudlets in the edge networks near to the mobile
devices is an efficient way to improve the user accessibility
to the cloud data and furthermore to reduce the execution
time of mobile applications and power consumption of the
mobile devices by offloading some computation intensive
load of the mobile devices to the cloudlets. Since a cloudlet
is located near to the mobile devices, the connection between
them can be established by using a wireless technology
such as WiFi or a cellular communication network. In order
to construct the environment for a mobile application at a
cloudlet, a mobile user can instantiate customized service
software using virtual machine (VM) technology on its
nearby cloudlet, and uses that VM via a wireless channel.

The OSGi specification [15], [16] is a set of standards re-
leased by the OSGi Alliance for modular component services
on the Java VM and an application developed based on OSGi
composes of a number of modular units, called bundles,
decoupled through service interface. The OSGi allows one
to be able to dynamically manipulate bundles. The R-OSGi
[7], [17] is an extension of the OSGi framework and enables
an application to be transparently distributed and executed

at different machines. In this paper, we installed the R-OSGi
framework on Windows and Android OS environments using
the Apache Felix [18] and constructed the remote bundle
execution platform.

III. SYSTEM MODEL

The offloading system model proposed in this paper is
shown as in Figure 1 where a mobile application is com-
posed of multiple modules. We assume that each application
execution has only one thread and each module may call
more than one other modules but the called modules should
be executed sequentially. A module that is eligible for
offloading can be executed locally or remotely at a server
residing in the edge network. A mobile device, also called
a mobile terminal, usually communicates with the server
via a wireless communication channel, e.g., WiFi or cellular
phone channel. If a module is eligible for offloading and if
the sum of the module execution time at the server and the
module transmission delay from the mobile terminal to the
server is shorter than the local execution time, the module
will be offloaded to the server for remote processing. Figure
1 shows an example of a module offloading where module
b of a mobile application is offloaded to the server.

Fig. 1. Module offloading in MCC.

A. Offloading system architecture

In the OSGi framework [15], [16] which follows the Java
modularity standard, a module is called a bundle and is
realized by a JAR package which contains multiple class
files and resource files. A lot of functions for managing the
bundles such as dynamic bundle addition and execution are
provided in the OSGi framework. Using these functions, one
can easily develop mobile applications each of which con-
sists a set of bundles. The R-OSGi [7], [17] is an extended
mechanism to execute a module remotely at another device.
In this paper, the module offloading mechanism is imple-
mented by using R-OSGi and most modules of a mobile
application are developed as the independent components
that can be executed at the server over the network or even at
another mobile device. Furthermore, the mobile applications
considered here are RESTful in the sense that there is no

2

state dependence between a caller and a callee bundles. A
callee receives the input data only from its caller and on
the other hand a caller receives the return data only from its
callee.

B. Application execution model

The relationship between the modules of an application
are represented as a directed tree graph G(N,E) as shown
in Figure 2 where N denotes the set of modules that
constitutes the application and are eligible for offloading,
and E = {eij |i, j ∈ N} denotes the set of edges connecting
modules. A edge eij represents the calling relationship of
modules i and j, i.e., from caller i to callee j. In this paper,
for the sake of simplicity we consider only one module that
is not eligible for offloading. In reality, however, there may
be more than one module that is not eligible for offloading.
We can simply consider different tree graphs each of which
is rooted at a module that is not eligible for offloading
like node 0 in Figure 2. For an arbitrary module i, the
execution times for processing it locally at the arriving
mobile device and remotely at the server are denoted by Li

and Ri, respectively, and we generally have Li ≥ Ri. We
ignore the queueing delay at a mobile device since generally
only one heavy application is executed at a mobile device
at a time. Furthermore, since a server is located at the edge
network near to the mobile devices, e.g., attached with a
WiFi access point, it commonly covers a limited number of
mobile devices and therefore in this paper we assume that
there is no waiting delay at each server.

We assume that the input data of a module is only from
its previous module, and that the output data of the module
which is sent back to module 0 is much smaller than any
input data and can be neglected. The input data of module
i is denoted by Di and the network speed at current time t
is denoted by Bt. Therefore, the data transmission time Ti

can be calculated by Ti = Di/Bt. We assume that a module
can call more than one other module. On the other hand, a
module can be called by only one other module and if a
module is called by more than one module the module is
cloned and is represented as another independent module on
the tree graph.

Fig. 2. A tree graph for module relationship of a mobile application.

The execution time of a mobile application depends on

the processing power of the mobile device that starts the
application, the processing power of the server, and also
the data transmission time from the mobile device to the
server. Furthermore, the transmission time of a module
depends on the size of the module code which includes the
data passing to the following module, and heavily on the
network congestion. In order to estimate the network speed
between a mobile device and the server on the network,
we choose to send a small data packet periodically from a
mobile device to the server. We assume that there is no data
transmission delay between two modules if both the modules
are processed at the same location, no matter at the mobile
device or at the server.

IV. TASK OFFLOADING ALGORITHMS

In this section, we formulate a combinatorial optimization
problem for module offloading and propose two offloading
algorithms, one for a chain application and the other for a
general application.

A. Problem formulation

We use a decision variable xi(i ∈ N) to indicate whether
to offload module i to the server or not at time t, and if
module i is determined to offload to the server we set xi

to be 1 and otherwise to be 0. We use X = {xi|i ∈ N}
to denote the offloading strategy for all the modules of a
mobile application. We define an objective function for the
offloading problem, similar to the optimization problem in
[13], as follows where a gain indicating the benefit for a
offloading strategy X is to be maximized.

max G =
∑
i∈N

xi(Li −Ri)−
∑

eij∈E

(1− xi)xjTj

−
∑

eij∈E

xi(1− xj)Tj , (1)

subject to

Ti > 0, ∀eij ∈ E, (2)
x0 = 0, (3)
xi ∈ {0, 1}, ∀i ∈ N. (4)

The first part of the objective function (1) indicates the total
benefit by offloading the modules to the server and the latter
two parts show the costs for offloading the modules to the
server. The constraint (2) shows the transmission delay from
module i to the server is greater than 0. The constraints (3)
shows that module 0 is not eligible for offloading and should
be processed locally.

B. Offloading algorithm for a chain application

Here, we consider a simple case where the modules of
a mobile application are executed sequentially as shown in
Figure 3. This means that each module has only one previous
and one subsequent modules and the last module has only
one previous module.

3

Fig. 3. A chain application.

From the objective function (1), we see that once a module
is offloaded to the server all the following modules intend
to be offloaded and processed at the server. We can have the
following theorem.

Theorem 1: The offloading happens only once for a chain
application and the optimal offload end point is the last
module on the chain.

Proof: Suppose that a chain application offloads k (k >
1) times to the server. For each offloading i (1 ≤ i ≤ k),
suppose the starting and the end modules are si and ei,
respectively, then we have si ≤ ei and ei < si+1. From
function (1), the gain G obtained by offloading the modules
k times can be written as follows.

G =
k∑

i=1

{ ei∑
j=si

(Lj −Rj)− (Tsi + Tei+1)
}
. (5)

Since Li ≥ Ri (i ∈ N), we have

G ≤
ek∑

j=s1

(Lj −Rj)−
k∑

i=1

(Tsi + Tei+1) (6)

≤
ek∑

j=s1

(Lj −Rj)− (Ts1 + Tek+1) (7)

≤
|N |∑
j=s1

(Lj −Rj)− Ts1 . (8)

The right hand of the inequality (7) is nothing else when
the offloading starts at s1 and ends at ek; i.e., the offloading
happens only once. Furthermore, the inequality (8) shows
that the largest gain can be obtained if the end module for
offloading is the last module, since the output data from the
last module back to node 0 is much less than the input data
to any module and the data transmission delay between two
modules can be neglected if the two modules are processed
at the same location. Therefore, we can conclude that the
offloading happens only once for a chain application and
the optimal end module for offloading is the last one.

We propose the following offloading algorithm according
to Theorem 1. The algorithm searches the best starting
module for offloading from the last module towards node
0. For each module i the gain obtained starting from it to

the last module is calculated by Gi =

|N |∑
j=i

(Lj − Rj) − Ti.

The best offloading point will be the module that yields
the maximum gain. When the maximum value of Gi is
negative, no module will be offloaded. It is easy to see that
the complexity of the algorithm is bound by O(|N |).

Algorithm 1 Offloading algorithm for a chain application.
1: Set maximum gain Gmax = G|N | and offloading point

pmax = |N |
2: for module i from |N | − 1 to 1 do
3: if Gmax < Gi then
4: Gmax = Gi and pmax = i
5: end if
6: end for
7: Obtain the maximum gain Gmax and the offloading point

is module pmax

C. Offloading algorithm for a general application

Fig. 4. A general application.

Here, we only consider the case with one module that is
not eligible for offloading and represent the modules by a
directed tree topology as shown in Figure 4. The root of
the tree denoted by node 0 represents the module that is not
eligible for offloading. For a general mobile application, we
have the following theorem.

Theorem 2: If a module on a tree topology is offloaded, the
modules on the subtree rooted at the module should also be
offloaded.

Proof: From the objective function (1), we see that
the gain of offloading is topology independent in the sense
that the gain for offloading depends only on the execution
time reductions of the modules and the data transmission
delays between the modules and the server. Furthermore,
from Theorem 1, we see that if a module is offloaded to the
server, all the following modules on the chain should also
be offloaded to the server. Since a path from a module on
a tree structure to each leaf module rooted at the module
can been seen as a chain, we can conclude that if a module
is offloaded, the modules belonging to the subtree rooted at
the offloaded module should also be offloaded.

In this paper, we propose an offloading algorithm that
starts to determine the best offloading point from each leaf
module towards to the root of the tree graph until a joint
point, e.g., module 1 or 4 shown in Figure 4. Then, the
algorithm determines whether to offload the module at the
joint point and forwards the decisions to the upper module.
The offloading decision of a joint point module can be made
only if all the offloading decisions of its children have been

4

made, e.g., the offloading decision of module 4 can be made
only if the offloading decisions of modules nodes 5, 6, 7,
and 8 have all been done. The algorithm terminates when
node 0 is reached and all the module offloading decisions
have been finished.

Algorithm 2 Offloading algorithm for a general application.
1: Mark all modules as undetermined
2: Run Algorithm 1 to determine maximum gain Gk of the

branch k from each leaf module to its nearest joint point
and mark modules on the branch as determined

3: while not reach module 0 or there is any undetermined
module do

4: /* suppose there is more than one branch from joint
point i and all the best offloading points of the
branches are set in Pi */

5: if Gi >
∑

k∈Pi
Gk then

6: Mark module i as ”to be offloaded” and determined
7: Send gain Gi and Pi = {i} to parent module
8: else
9: Gi =

∑
k∈Pi

Gk

10: Mark i as determined, send gain Gi and best
offloading point set Pi to parent module

11: end if
12: Run Algorithm 1 to decide maximum gain of the

branch from i’ parent to next nearest joint point and
mark modules on the branch as determined

13: end while
14: Obtain maximum gain and offloading point set for each

branch of node 0

V. OFFLOADING SYSTEM IMPLEMENTATION

Fig. 5. System architecture.

We implemented our proposed offloading system on the
R-OSGi framework [7], [15], [17] that is extended from
a modular decoupled components and pluggable dynamic
service models, OSGi, and developed for remote component
execution. There are many kinds of OSGi implementations
and we chose to use an open source implementation package
called Apache Felix [18]. The system architecture of our
proposed system is shown in Figure 5. In the experiments,
we employed one mobile device and one server that are
connected by a 54Mpbs IEEE 802.11g based wireless LAN

access point. In order to examine the effect of network
congestion on the offloading decisions, we established an-
other steady data transmission flow via the access point by
tuning the flow quantity. The mobile device being used in
our implementation experiments is a Google Nexus 7 tablet
device with 2GB RAM and Anroid OS 5.0.2. Furthermore,
the server being used is a laptop computer with the Intel
Core i5-5200 2.2GHz CPU, 8GB memory, and Windows 10
and is connected to the access point by a wired line.

A. Module remote execution

In our offloading system, any module that is eligible for
offloading can be processed locally at a mobile device or
the server located in the edge network. If the execution
code of the module does not exist at the server, it will
be firstly transferred to the server and then executed at the
server. The code transferred to the server will be kept at the
server for possible future execution. Therefore, only when
the execution code of a module does not exist in the server
the execution time of the module is little longer due to the
code transmission delay. On the other hand, if the code exists
in the server, it can be executed right away.

B. Data transmission delay estimation

The servers located in the edge networks may mostly
communicate with mobile devices via the wireless LAN
or the cellular communication network. In this paper, we
employed one laptop computer as the server and one Google
Nexus tablet terminal as the mobile device. The mobile
device is connected to the server by a 54Mbps Wireless LAN
access point. As described in previous section, the offloading
decision depends heavily on the data transmission delay,
which is determined by the network congestion, especially
in a wireless communication environment. In this paper,
in order to estimate the communication delay between the
mobile device and the server on the network we chose to
transmit a fixed size data packet of 1MB to the server
periodically (once every 60s) and measured the sample
round-trip time (SRTT) for each transmission. Each time
when the data packet is sent to the server the mobile
device times how long it takes for it to be acknowledged
and obtained a round-trip time sample, say, T . In order to
avoid the influence by the network fluctuation, we calculate
the average RTT using an exponentially weighted moving
average (EWMA) approach [19] as follows.

RTT = αRTT + (1− α)SRTT,

where RTT is the average RTT and α is a smoothing factor
with a constant between 0 and 1 to control how quickly the
RTT adapts to changes. Similarly to the TCP specification
in [20], we used α = 7/8. Therefore, we can calculate the
network speed at current time t as Bt = 1/RTT .

VI. PERFORMANCE EVALUATION

To examine our offloading algorithms, we implemented
two kinds of mobile applications. One is the computation
intensive application where the size of the execution code

5

and the input data to each module of the application can
be neglected while the execution time is significantly long.
We only consider the computation time of each module
in this kind of applications. Another is the data intensive
application where the sum of sizes of the execution code and
the input data of a module is ineligibly large. We consider
both the computation and the transmission times for this kind
of applications in offloading decision.

A. Single chain applications

Fig. 6. A sample chain application.

We examined a chain application that has 5 modules
eligible for offloading as shown in Figure 6. All the modules
have the same execution times. For each parameter setting in
the experiments, the execution times of the 5 modules were
fixed and and the average completion time of the application
calculated from 20 independent executions is shown in the
figures. In the figures, the total completion time when all
the modules are processed locally is denoted by ”Local”
and on the other hand, the total completion time when all
the modules are processed at the server is denoted by ”Full
offload”. The completion time using our proposed algorithm
is denoted by ”Proposed”.

Figure 7 shows the results for executing a computation
intensive application. Here, we varied the total execution
times of the chain application, denoted by Cases 1, 2, 3,
and 4, and the input data to each module was only 4 bytes
and the data transmission delay can be ignored. Furthermore,
the network speed was around 4Mbps. We see that using
our proposed algorithm all the modules are offloaded to the
server since the network speed is fast enough. We see that
when the computation time of the application becomes large,
the gain obtained from offloading becomes significantly
large.

Fig. 7. Computation intensive chain application.

Fig. 8. Data intensive chain application.

We also examined the chain application for the case where
the input data and the data transmission delay can not be
neglected; i.e., the application is both computation and data
intensive. Figure 8 shows the application completion time for
various network speed where the input data to each module
was set to 5MB. We see from Figure 8, the network speed
has a significant effect on the application completion time
and on the offloading decision in our proposed algorithm. In
our proposed algorithm, if the network speed is fast enough,
e.g., 4MB/s, most of modules are offloaded to the server.
On the other hand, is the network speed becomes extremely
slow, e.g., 0.08MB/s, no module will be offloaded any more.

B. General applications

We examined a general computation intensive application
that has 9 modules eligible for offloading as shown in Figure
4. Similar to the chain application in previous subsection,
we first examined the application using 4 parameter settings
each with a different execution time denoted by Cases 1, 2, 3,
and 4 in the figure but the input data to each module can be
ignored. Furthermore, the network speed was around 4Mbps.
The average completion time of the application was obtained
from 20 executions as shown in Figure 9. We see from this
figure that, similar to the results for the chain application,
when the completion time of the application becomes larger,
the gain for offloading becomes larger.

We also examined the general application when both the
input data to each module and the data transmission delay
can not be ignored; i.e., the application is computation and
data intensive. The input data to modules 1 through 9 are
18, 5, 3, 4, 2, 1, 2, 2, and 2 MB, respectively. The results
shown in Figure 10 are obtained as the average completion
times of the application by 20 executions. We see from the
figure that our proposed algorithm performs better than both
the cases where there is no offloading and all the modules
are offloaded. We also see that the network speed has a key
effect on the offloading decision in our proposed algorithm.
Most of the modules are offloaded to the server if there is
no network congestion but if the network congestion occurs,

6

no or less modules will be offloaded.

Fig. 9. Computation intensive tree application.

Fig. 10. Data intensive tree application.

VII. CONCLUSION

In this paper, we express a general mobile application
using a directed tree graph that consists of multiple inde-
pendent modules, and formulated a combinatorial optimiza-
tion problem of how to offload the modules of a mobile
application to the server over the network. We proposed two
efficient offloading algorithms to obtain the solutions for the
offloading problem. Then, we implemented the proposed of-
floading algorithms on the R-OSGi framework and examined
the performance of the proposed algorithms. The experiment
results show that, for a computation extensive application
with small amount of input data, most of modules are of-
floaded to the server. On the other hand, for a data intensive
application the data transmission delay plays a key role in
module offloading decisions. If the data transmission delay
is negligibly small, most modules intend to be processed at
the server. However, if the data transmission delay is large
enough, most modules choose to be processed locally at the
mobile devices.

ACKNOWLEDGMENT

This research is partially supported by Collaboration Re-
search Grant from National Institute of Informatics, Japan.

REFERENCES

[1] X. Fan, J. Cao, and H. Mao: A Survey of Mobile Cloud Computing,
ZTE Communications, Vol. 9, No. 1, pp. 4–8 (2010).

[2] K. Kumar and Y. Lu: Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?, Computer, Vol.43, No.4, pp.
51-56 (2010).

[3] H. Dinh, C. Lee, D. Niyato, and P. Wang: A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches, Wireless
Communications and Mobile Computing, Vol. 13, No. 18, pp. 1587–
1611 (2013).

[4] M. Satyanarayanan, P. Bahl, and R. Caceres, and N. Davies: The
Case for VM-based Cloudlets in Mobile Computing, IEEE Pervasive
Computing, Vol. 8, No. 4, pp. 14–23 (2009).

[5] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck,
and K. Joshi: An Open Ecosystem for Mobile-Cloud Convergence,
IEEE Commun. Mag., Vol. 53, No. 3, pp. 63–70 (2015).

[6] Y. Zhang, H. Liu, L. Jiao, and X. Fu: To offload or not to offload:
An efficient code partition algorithm for mobile clouding computing,
Proc. Int. Conf. Cloud Netwotking (CLOUDNET 2012), pp. 80–86,
Paris, France (Nov. 2012).

[7] J.S. Rellermeyer, G. Alonso, and T. Roscoe: R-OSGi: Distributed
Applications Through Software Modularization, Middleware 2007,
LNCS 4834, Eds. R. Gerqueira and R.H. Campbell, pp. 1–20, Springer
(2007)

[8] C.C. Lin, H.H. Chin, and D.J. Deng: Dynamic Multi-Service Load
Balancing in Cloud-based Multimedia System, IEEE Syst. J. , Vol. 8,
No. 1, pp. 225–234 (2013).

[9] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan: A Framework
for Partitioning and Execution of Data Stream Applications in Mo-
bile Cloud Computing, ACM SIGMETRICS Performance Evaluation
Review, Vol. 40, No. 4, pp. 23–32 (2013).

[10] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E.
Zegura: COSMOS: Computation Offloading as a Service for Mobile
Devices, Proc. ACM MobiHoc’14, pp. 287–296 (2014).

[11] K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen: An SMDP-
based Resource Allocation in Vehicular Cloud Computing Systems,
IEEE Trans. Industrial Electronics, Vol. 62, No. 12, pp. 7920–7928
(2015).

[12] M. Jia, J. Cao and L. Yang: Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,
Proc. INFOCOM Workshop on Mobile Cloud Computing, pp. 352–
357, Toronto, Canada (2014).

[13] Y. Tao, Y. Zhang, and Y. Ji: Efficient Computation offloading strategy
for mobile cloud computing, Proc. IEEE Int. Conf. Advanced Inf. Net.
and Appl. (AINA 2015), pp. 626–633, Gwangju, Korea (2015).

[14] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti: CloneCloud:
Elastic Execution between Mobile Device and Cloud, European Conf.
Computer Systems (EuroSys’11), pp. 301–314 (2011).

[15] OSGi: http://www.osgi.org/.
[16] A. Adjaz, S. Bouzefrane, D. Huang, and P. Paradinas: An OSGi-based

Service Oriented Architecture for Android Software Development
Platforms, Proc. Int. Symp. Softw. Syst. Eng. and their Appl., pp. 1–10,
paris, France (2011).

[17] F. Houacine, S. Bouzefrane, L. Li, and D. Huang: MCC-OSGi:
An OSGi-based Mobile Cloud Service Model, Proc. Int. Symp.
Autonomous Decentralized Syst., pp. 37–43, Mexico City, Mexico
(2013).

[18] Apache Felix: http://www.felix.org/.
[19] A.S. Tanenbaum and D.J. Wetherall: Computer Networks, 5th Ed.,

Pearson, New York (2011).
[20] TCP Extension for High Performance, RFC1323,

https://www.ietf.org/rfc/rfc1323.

7

