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Abstract

Hereditary-shellable simplicial complexes are those such that any restrictions, including them-
selves, are shellable. Matroid complexes are examples of hereditary-shellable simplicial complexes.
We show that the pure 2-skeletons of 2-dimensional hereditary-shellable simplicial complexes are
extendably shellable. This generalizes the result of Björner and Eriksson that matroid complexes
of dimension 2 are extendably shellable. On the other hand, we give an example of a 2-dimensional
hereditary-shellable simplicial complex that is not vertex decomposable. Further, we discuss prop-
erties of pure skeletons of strong obstructions to shellability as an application of our result.

1 Introduction

In this paper, we investigate simplicial complexes such that any restrictions, including themselves,
are shellable. We say such simplicial complexes are hereditary-shellable ([9]). A related concept is
“obstructions to shellability,” studied by Wachs [13]: an obstruction to shellability is a simplicial
complex that is not shellable but all of its proper restrictions are shellable. A trivial but important
relation between these two concepts is that a simplicial complex is hereditary-shellable if and only if
it has no obstructions to shellability as its restrictions. In other words, obstructions to shellability are
the forbidden subcomplexes (with respect to restrictions) for hereditary-shellability.

We have the following implications for general pure simplicial complexes.

uniform matroid ⇒ matroid ⇒⇒
hereditary-shellable

vertex decomposable

⇒
⇒ shellable

Here, the implication “matroid ⇒ hereditary-shellable” follows from the fact that any restriction of a
matroid complex is again a matroid complex, and that all matroid complexes are shellable (see [2, 10]).



A (pure) shellable complex is extendably shellable if every partial shelling can be extended to
the whole shelling ([8]). Björner and Eriksson [3] showed that 2-dimensional matroid complexes are
extendably shellable. In this paper we show that the pure 2-skeletons of a 2-dimensional hereditary-
shellable complexes are extendably shellable (Theorem 3.5). Especially, pure 2-dimensional hereditary-
shellable simplicial complexes are extendably shellable (Corollary 3.6). This strengthens the result of
Björner and Eriksson, and give the following refined implications for pure 2-dimensional simplicial
complexes.

uniform matroid ⇒ matroid ⇒⇒
hereditary-shellable ⇒ extendably shellable

vertex decomposable

⇒
⇒ shellable

It is natural to ask whether the implication “matroid ⇒ vertex decomposable” is refined similarly
or not, that is, whether “hereditary-shellable ⇒ vertex decomposable” holds or not (for dimension
2). Unfortunately, the answer is negative. We show there exist pure hereditary-shellable simplicial
complexes that are not vertex decomposable in each dimension ≥ 2 (Example 4.6).

It is currently an open question whether pure 3-dimensional hereditary-shellable complexes are
extendably shellable or not. We even do not know whether 3-dimensional matroid complexes are
extendably shellable or not. But it should be remarked that Tracy Hall [11] gives an example of an
11-dimensional matroid complex that is not extendably shellable. (This example is the boundary com-
plex of a 12-dimensional crosspolytope.) Therefore, hereditary-shellability does not imply extendable
shellability for higher dimensions in general.

In the last section, as an application of our result, we discuss the properties of pure skeletons
of 3-dimensional strong obstructions to shellability. Here, a strong obstruction to shellability is a
nonshellable simplicial complex such that whose proper restrictions and proper links are all shellable.
We show that, if Γ is a 3-dimensional strong obstructions to shellability, the pure 3-skeleton of Γ is
nonshellable while the pure i-skeletons of Γ are shellable for 0 ≤ i ≤ 2.

2 Preliminaries

Let V be a finite set. Γ ⊆ 2V is a (finite) simplicial complex on V if B ⊆ A ∈ Γ implies B ∈ Γ.
The set V is the set of vertices of Γ. A face is an element of Γ, and a facet is a maximal face with
respect to inclusion. For a set {F1, F2, . . . , Fn} of faces, we denote the simplicial complex {A ⊆ V |A ⊆
Fi for 1 ≤ ∃ i ≤ n} by 〈F1, . . . , Fn〉. The dimension of a face A ∈ Γ is |A| − 1, and the dimension of
a simplicial complex is defined as the maximum dimension of its faces. (Note that the empty set is a
face of dimension −1.) A simplicial complex is pure if all the facets have the same dimension. We use
the following conventional terminologies for the names of faces. A face of dimension 0 (= of size 1) is
a vertex, and a face of dimension 1 (= of size 2) is an edge. (We use the same terminology “vertex” for
both an element of the underlying set V and a 1-dimensional face.) A face of dimension 2 is a 2-face
or a triangle. A face of dimension k is a k-face.

Shellability of simplicial complexes is defined as follows.

Definition 2.1. ([4]) A simplicial complex Γ is shellable if all the facets can be arranged into a
sequence F1, . . . , Fn that satisfies the following condition: for each 2 ≤ k ≤ n, 〈F1, . . . , Fk−1〉 ∩ 〈Fk〉 is
a pure simplicial complex of dimension dimFk − 1.
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A pure d-dimensional simplicial complex is strongly connected if for any two facets F and G there
is a sequence of facets F = F1, F2, . . . , Fk = G such that |Fi ∩ Fi+1| = d for all 1 ≤ i ≤ k − 1. The
following property is well-known and easily observed.

Lemma 2.2. (e.g. [2, Ex. 7.3]) A pure shellable simplicial complex is strongly connected.

Especially, in a pure shellable d-dimensional simplicial complex with d ≥ 1, the graph consisting
of the vertices and the edges of the simplicial complex is always connected.

For a simplicial complex Γ on V , the link of A ∈ Γ is defined as linkΓ(A) = {F ∈ Γ : F ∪ A ∈
Γ, F ∩ A = ∅}. For a simplicial complex Γ and 0 ≤ k ≤ dim Γ, the pure k-skeleton purek(Γ) is
the simplicial complex consisting of the k-faces of Γ and its subfaces. Note that purek(Γ) is a pure
k-dimensional simplicial complex. It is known that these two operations preserve shellability as follows.

Lemma 2.3. ([4, Proposition 10.14]) If a simplicial complex Γ is shellable, then linkΓ(A) is shellable
for any A ∈ Γ.

Lemma 2.4. ([4, Theorem 2.9]) If a simplicial complex Γ is shellable, then purek(Γ) is shellable for
all 0 ≤ k ≤ dimΓ.

Note that the converse of Lemma 2.4 is not true for dim ≥ 3 as remarked in [9, p. 1610], but is
true for dimensions up to 2: it is trivial for dimensions ≤ 1, and the 2-dimensional case follows from
the following lemma. (Remark that pure0(Γ) is always shellable, and pure1(Γ) is shellable if and only
if it is connected.)

Lemma 2.5. ([9, Prop. 2.7]) A 2-dimensional simplicial complex Γ is shellable if and only if pure2(Γ)
is shellable and pure1(Γ) is connected.

For a simplicial complex Γ on V , the restriction to A ⊆ V is defined as Γ[A] = {F ∈ Γ : F ⊆ A}.
We sometimes refer Γ[V −B] as the deletion of B. Note that restrictions of a pure simplicial complex
may not be pure.

In general, restrictions of a shellable simplicial complex may not be shellable. Thus the following
definition is a strengthening of shellability.

Definition 2.6. ([9]) A simplicial complex Γ is hereditary-shellable if all its restrictions are shellable.

Remark that every hereditary-shellable simplicial complex itself is shellable by considering the
restriction to the whole vertex set V . Hereditary-shellable complexes are discussed in relation to the
obstructions to shellability in [9].

Example 2.7. Γ1 = 〈{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}〉 is shellable but not hereditary-
shellable, since Γ1[{a, b, e, f}] = 〈{a, b}, {e, f}〉 is not shellable. On the other hand, Γ2 =
〈{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}, {a, d}, {a, e}, {a, f}, {b, e}, {b, f}, {c, f}〉 is hereditary-shellable.

Example 2.8. The simplicial complex Γ3 = Γ2 ∪ 〈{{a, g}, {c, g}, {e, g}, {b, h}, {d, h}, {f, h}, {g, h}}〉
is also hereditary-shellable. (This example will be used later in Example 4.6.)
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Other important examples are matroid complexes, as will be discussed in Section 4.

We list basic properties about hereditary-shellability as follows.

Lemma 2.9. Every restriction of a hereditary-shellable simplicial complex is hereditary-shellable.

Proof. This follows from the definition.

Lemma 2.10. Every link of a hereditary-shellable simplicial complex is hereditary-shellable.

Proof. This follows from Lemma 2.3 and the relation (linkΓ(A))[W ] = linkΓ[W∪A](A) for A ∈ Γ and
W ⊆ V (Γ) with A ∩ W = ∅.

Lemma 2.11. Let Γ be a d-dimensional hereditary-shellable simplicial complex, and assume there are
facets A, B ∈ Γ with dim A = dimB and |A4B| ≥ 4. Then there exists a facet C ∈ Γ, different from
A and B, such that dimC ≥ dim A and A ∩ B ⊆ C ⊆ A ∪ B.

Proof. Assume there exists no facet C in Γ, different from A and B, satisfying dimC ≥ dimA and
A∩B ⊆ C ⊆ A∪B. This means there exist no facets of dimension ≥ k = dim(A−B) = dim(B −A)
in linkΓ[A∪B](A ∩ B) other than A − B and B − A. That is, linkΓ[A∪B](A ∩ B) has exactly two k-
dimensional facets A−B and B−A, and other facets are of smaller dimensions. Here, k = |A−B|−1 =
|A∆B|/2 − 1 ≥ 1. Since A − B and B − A are disjoint, purek(linkΓ[A∪B](A ∩ B)) is not strongly
connected. This implies purek(linkΓ[A∪B](A∩B)) is nonshellable by Lemma 2.2, linkΓ[A∪B](A∩B) is
nonshellable by Lemma 2.4, and then Γ[A ∪ B] is nonshellable by Lemma 2.3. But this contradicts
the assumption that Γ is hereditary-shellable.

Corollary 2.12. Let Γ be a 2-dimensional hereditary-shellable simplicial complex, and a, b, c, d, e,
f be distinct vertices of Γ.

(i) If {a, b, c} and {c, d, e} are facets of Γ, then one of {a, c, d}, {a, c, e}, {b, c, d} and {b, c, e} is a
facet.

(ii) If {a, b, c} and {d, e, f} are facets of Γ, then there exists a facet A ∈ Γ such that |A∩{a, b, c}| = 2
and |A ∩ {d, e, f}| = 1.

Proof. (i) follows directly from Lemma 2.11. For (ii), Lemma 2.11 assures the existence of a facet
C ∈ Γ such that (a): |C ∩ {a, b, c}| = 2 and |C ∩ {d, e, f}| = 1, or (b): |C ∩ {a, b, c}| = 1 and
|C ∩ {d, e, f}| = 2. But, it is easily shown (b) implies (a) by applying (i) to {a, b, c} and C.

For a simplicial complex, consider a sequence F1, . . . , Fm of facets that does not necessarily consist
of all the facets but satisfies the condition in Definition 2.1 for each i with 2 ≤ i ≤ m ≤ n. Such a
sequence is called a partial shelling. When a partial shelling uses all the facets, then it is a complete
shelling. The following definition is proposed by Danaraj and Klee in [8].

Definition 2.13. ([8]) A simplicial complex Γ is extendably shellable if any partial shelling F1, . . . , Fm

can be extended to a complete shelling F1, . . . , Fm, Fm+1, . . . , Fn.
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Note that extendably shellable complexes have to be pure, since every shelling should start from
a facet of maximum dimension while any one facet constitutes a partial shelling. It is known that
extendable shellability is strictly stronger than shellability even for pure simplicial complexes, see [3],
etc.

We say a partial shelling F1, . . . , Fm is a maximal partial shelling when there exists no partial
shelling F1, . . . , Fm, Fm+1. Note that a simplicial complex has at least one maximal partial shelling
that is not complete if it is not extendably shellable.

As remarked before, the converse of Lemma 2.4 is not true for dimensions ≥ 3. But, by adding
extendability, we have the following. This proposition will play a role in Section 5.

Proposition 2.14. For a d-dimensional simplicial complex Γ, if pured(Γ) is shellable and purek(Γ)
is extendably shellable for all 0 ≤ k ≤ d − 1, then Γ is shellable.

Proof. Construct a shelling of Γ as follows. First, let Sd = F d
1 , F d

2 , . . . , F d
kd

be a shelling of
pured(Γ). Since pured(Γ) is shellable, pured−1(pured(Γ)) is shellable by Lemma 2.4. Take a shelling
T d−1 = Gd−1

1 , Gd−1
2 , . . . , Gd−1

ld−1
of pured−1(pured(Γ)). This is a partial shelling of pured−1(Γ). By

the assumption that pured−1(Γ) is extendably shellable, this partial shelling can be extended to a
shelling T d−1Sd−1 = Gd−1

1 , Gd−1
2 , . . . , Gd−1

ld−1
, F d−1

1 , F d−1
2 , . . . , F d−1

kd−1
of pured−1(Γ). From this it is easy

to verify that SdSd−1 = F d
1 , F d

2 , . . . , F d
kd

, F d−1
1 , F d−1

2 , . . . , F d−1
kd−1

is a shelling of pured(Γ)∪ pured−1(Γ).
Hence pured−2(pured(Γ)∪pured−1(Γ)) is shellable by Lemma 2.4, thus has a shelling T d−2. Since this
is a partial shelling of pured−2(Γ) and pured−2(Γ) is extendably shellable, T d−2 can be extended to
a shelling T d−2Sd−2 of pured−2(Γ). From this it is easily verified that SdSd−1Sd−2 is a shelling of
pured(Γ) ∪ pured−1(Γ) ∪ pured−2(Γ). After repeating this construction, a sequence SdSd−1 · · · S0 is
constructed as a shelling of Γ.

3 Extendable shellability of 2-dimensional hereditary-
shellable complexes

For a given 2-dimensional simplicial complex, let A be some given subset of 2-faces of the simplicial
complex. We denote by A the rest of the 2-faces. We call a vertex an A-vertex if it is contained in
some 2-face of A, and a non-A-vertex otherwise. Similarly, we call an edge an A-edge if it is contained
in some 2-face of A, and a non-A-edge otherwise. Accordingly, we say a 2-face is an A-triangle if it is
in A, and a non-A-triangle if it is in A. We say a non-A-triangle is of type (s, t) if it has s A-vertices
and t A-edges. (Note that the possible types are (0-0), (1-0), (2-0), (2-1), (3-0), (3-1), (3-2), and
(3-3).)

In what follows, we consider a pure 2-dimensional simplicial complex Γ that is not extendably
shellable. Such Γ has a maximal partial shelling that is not complete. We let F be the set of the
2-faces (= facets) of such a partial shelling, and eventually we investigate the types of non-F-triangles
(= 2-faces in F , that is, 2-faces not in the partial shelling). Note here that neither F nor F is empty.
First, we immediately observe the following.

Lemma 3.1. Assume that a pure 2-dimensional simplicial complex Γ is not extendably shellable,
and let F be the set of the 2-faces of a maximal partial shelling that is not complete. Then each
non-F-triangle is of type (0-0), (1-0), (2-0), (3-0), or (3-1).
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Proof. If there is a non-F-triangle F of a type not listed (i.e., type (2-1), (3-2), or (3-3)), then the
maximal partial shelling can be extended by adding F to the last of the sequence, contradicting the
maximality.

For further investigation, we introduce an equivalence relation among the edge-path cycles (=
closed walks), which describes the fundamental group of a simplicial complex in a combinatorial way.
Here, an edge-path is a sequence v0-v1-v2- · · · -vr of vertices, where every pair of consecutive vertices
{vi, vi+1} is an edge of the simplicial complex. An edge-path cycle is an edge-path such that v0 = vr.
(We allow some intermediate vertices or edges to appear repeatedly in an edge-path or an edge-path
cycle, i.e., we do not require the paths and cycles to be simple.)

Definition 3.2. We say two edge-path cycles C1 and C2 are simply equivalent when
(R1) C1 = u0- . . . -uk-uk+1- . . . -ur−1-u0, C2 = u0- . . . -uk-v-uk+1- . . . -ur−1-u0, and {uk, v, uk+1} is a
2-face of Γ, or
(R2) C1 = u0- . . . -uk- . . . -ur−1-u0 and C2 = u0- . . . -uk-v-uk- . . . -ur−1-u0.
Two cycles C and C′ are equivalent if there is a sequence C = C1, C2, . . . , Ct = C′ such that Ci and Ci+1

are simply equivalent for each 1 ≤ i ≤ t − 1.

For a connected simplicial complex Γ, by fixing the base vertex v0, the equivalence classes of the
edge-path cycles form an edge-path fundamental group, and it is isomorphic to the usual fundamental
group of the underlying space of Γ (e.g., [12, Theorem 3.7.3]). Especially, a connected simplicial
complex Γ has only one equivalence class of edge-path cycles if and only if Γ is simply connected.
Since a pure shellable complex of dimension ≥ 2 is simply connected (e.g., [1]), a pure shellable
complex of dimension ≥ 2 has only one equivalence class of edge-path cycles. Especially, each cycle in
a pure shellable complex of dimension ≥ 2 should be equivalent to a trivial cycle that consists of only
one vertex.

We have the following lemma that restricts the structure of A and A in a simply connected complex.

Lemma 3.3. Let Γ be a simply connected pure 2-dimensional simplicial complex and A a subset
of the facets of Γ. Assume there is an edge-path cycle consisting of A-edges except for exactly one
non-A-edge. Then it cannot happen that all the non-A-triangles are of type (3-1).

Proof. Since every 2-face in A is of type (3-1), it can be observed easily that the numbers of non-A-
edges in the two cycles C1 and C2 in (R1) of Definition 3.2 have the same parity, regardless whether
the 2-face {uk, v, uk+1} is an A-triangle or a non-A-triangle. In (R2), too, it is obviously true that
the two cycles C1 and C2 have the same parity of non-A-edges. Thus, in Γ, in all equivalent edge-
path cycles the numbers of non-A-edges have the same parity. Hence, if there is an edge-path cycle
consisting of A-edges except exactly one non-A-edge, then the cycle is not equivalent to the trivial
cycle consisting of only one vertex that has no non-A-edges. This contradicts the assumption that Γ
is simply connected.

This lemma plays a crucial role in our further discussion. Before that, we have the following
corollary for the structure of maximal partial shellings.
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Corollary 3.4. Assume that a 2-dimensional pure simplicial complex Γ is shellable but not extendably
shellable. Let F be the set of 2-faces of a maximal partial shelling that is not complete. Then it cannot
happen that all the non-F-triangles are of type (3-1).

Proof. Let {a, b, c} be a non-F-triangle. This is of type (3-1) by assumption. So we assume, without
loss of generality, that {b, c} is an F-edge, and {a, b} and {a, c} are non-F-edges. Here, 〈F〉 is a
2-dimensional shellable complex since F is a partial shelling, and thus the graph consisting of all the
F-vertices and F-edges is connected by Lemma 2.2 and the remark after that. Hence, there exists a
path consisting of F-edges connecting a and c. On the other hand, Γ is simply connected since it is a
pure 2-dimensional shellable complex. The statement follows from Lemma 3.3.

Now we prove our main theorem.

Theorem 3.5. If a 2-dimensional simplicial complex Γ is hereditary-shellable, then pure2(Γ) is ex-
tendably shellable.

Proof. Assume there is a 2-dimensional hereditary-shellable simplicial complex Γ such that pure2(Γ)
is not extendably shellable. Here, pure2(Γ) is shellable by Lemma 2.4, but not extendably shellable by
assumption. Let F be the set of 2-faces of a maximal partial shelling of pure2(Γ) that is not complete.
Here, pure2(Γ) is strongly connected by Lemma 2.2, and this implies that there is a non-F-triangle
{x, y, z} that shares an F-edge {x, y} with an F-triangle. Such a 2-face should be of type (3-1) by
Lemma 3.1. So the two edges {x, z} and {y, z} are both non-F-edges. For a non-F-triangle of type
(3-1), we say the F-edge ({x, y} of {x, y, z}) the bottom edge, and the vertex opposite to the F-edge
(z of {x, y, z}) the apex vertex. Since 〈F〉 is 2-dimensional and shellable, the graph consisting of the
F-vertices and the F-edges is connected by Lemma 2.2 and the remark after that, and thus there is
a path consisting of F-edges starting from the apex vertex z and ending at the bottom edge {x, y}.

Let W ⊆ V be a set of vertices of minimum size such that Γ[W ] contains a non-FW -triangle F

of type (3-1) together with a path of FW -edges connecting the apex vertex and the bottom edge of
F , where FW = F ∩ Γ[W ] (i.e., the set of 2-faces of F contained in W ). (Remark that the types of
non-FW -triangles are considered with respect to FW , not F .) Here, W is well-defined since Γ = Γ[V ]
contains a non-FV -triangle of type (3-1) and a path of FV -edges connecting the apex vertex and the
bottom edge, as is observed above. We note that, for each edge of the path of FW -edges, including the
bottom edge of F , there exists at least one FW -triangle in Γ[W ] that contains the edge. (See Figure 1.)
We say this path of FW -edges together with the incident FW -triangles as an FW -triangle-path, while
we refer the path itself as the path part of the FW -triangle-path. Note that each vertex of W should
be either on F , on the path of FW -edges connecting the apex vertex and the bottom edge, or on
the FW -triangles that contain some FW -edge of the path. This follows from the minimality of W ,
since otherwise deleting the vertex does not corrupt the required property of W , contradicting the
minimality. This implies that each vertex of W is incident to some FW -triangle of Γ[W ]. Especially,
we observe that the non-FW -triangles in Γ[W ] are of type (3-0) or (3-1) by Lemma 3.1. (This follows
from that non-FW -triangles of type (3-2) or (3-3) are non-F-triangles of type (3-2) or (3-3), since
FW ⊆ F .)

We show that Γ[W ] contains no non-FW -triangles of type (3-0) by means of contradiction. Assume
{a, b, c} ∈ Γ[W ] is a non-FW -triangle of type (3-0). As discussed above, the minimality of W implies
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z
x y

WF

Figure 1: The set of vertices W . The gray 2-faces are FW -triangles, and the bold edges are FW -edges.

a b

P

a b

c

P f g

c

[Case 1] [Case 2]

Figure 2: The FW -triangle-path P from a to b is not contained in pure2(Γ[W \ {c}]).

that each vertex of W is either on F , on the path of FW -edges connecting the apex vertex and the
bottom edge, or on an FW -triangle incident to an edge on the path. First consequence we deduce from
this fact is that each vertex of W is incident to some FW -triangle of Γ[F ]. Especially this assures the
existence of an FW -triangle {b, d, e} in Γ[W ]. (Here, the vertices a, b, c, d, e are all distinct.) Further,
by Corollary 2.12, we can assume without loss of generality that there is a 2-face {a, b, d}. Note that
this 2-face is a non-FW -triangle of type (3-1).

Second consequence we deduce from the fact is that Γ[W ] contains an FW -triangle-path P whose
path part connects the apex vertex a and the bottom edge{b, d} of the 2-face {a, b, d} of type (3-1).
But we observe that Γ[W \ {c}] does not contain the FW -triangle-path P , since otherwise W \ {c}
contains a non-FW -triangle {a, b, d} of type (3-1) with an FW -triangle-path P connecting a and {b, d},
contradicting the minimality of W . Such a situation can happen when c is contained in the path part
of P (Case 1), or there is an edge {f, g} on the path part of P such that there exists an FW -triangle
{c, f, g} in Γ[W ] and this is the only one FW -triangle in Γ[W ] that contains {f, g} (Case 2), see
Figure 2.

[Case 1] Assume c is on the path part of P . On the path part of P , there are FW -edges incident
to c, and each of them are incident to an FW -triangle contained in Γ[W ]. Let {c, f, g} be one of
such FW -triangles. (Note that a, b, c, f, g are all distinct.) By Corollary 2.12, we can without loss of
generality assume there exists a non-FW -triangle {a, c, f} of type (3-1) in Γ[W ] with {c, f} on the
path part of P . (By Corollary 2.12, there are four candidates for the 2-face to exist. In any case, the
2-face will be a non-FW -triangle of type (3-1) contained in Γ[W ]. By exchanging the labels a with b,
and f with g, if needed, we can assume {a, c, f} exists, where at least one of {c, f} or {c, g} is on the
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path part of P . If {c, g} is on the path part of P but {c, f} is not, then we replace the path part of
P by the simply equivalent path applying the rule (R1) of Definition 3.2 at the 2-face {c, f, g}. Then
we have the situation that {a, c, f} is an FW -triangle in Γ[W ] and {c, f} is on the path part of P . We
need not care in the following argument whether f appears before or after c on the path part of P

starting from a. In Figure 3, the figures are written as f appearing before c, but we do not need to
change the argument of the following proof in case f appears after c.) On the subpath a-cP of the path
part of P between a and c, we look for an edge {p, q} nearest to a such that there is an FW -triangle
{b, p, q} or {c, p, q} in Γ[W ].

If there exists no such {p, q} at all, then Γ[W \ {b}] contains an FW -triangle-path from the apex
vertex a to the bottom edge {c, f} of the non-FW -triangle {a, c, f} of type (3-1). This contradicts the
minimality of W .

If there exists an FW -triangle {c, p, q} for the nearest edge {p, q}, then again Γ[W \ {b}] contains
an FW -triangle-path connecting the apex vertex a and the bottom edge {c, f} of the non-FW -triangle
{a, c, f} of type (3-1), where the path part is the subpath a-pP of P from a to p together with the
edge {p, c}, contradicting the minimality of W . (Figure 3 (2).)

Consider the case that no FW -triangle {c, p, q} exists for the nearest edge {p, q} but an F-triangle
{b, p, q} exists. By Corollary 2.12 and the existence of the two 2-faces {a, b, c} and {b, p, q}, there
exists one of the facets {a, b, p}, {a, b, q}, {b, c, p}, or {b, c, q} of type (3-1). If {a, b, p} (or {a, b, q})
exists, then Γ[W \ {c}] contains an FW -triangle-path connecting the apex vertex and the bottom edge
of the non-FW -triangle {a, b, p} (resp. {a, b, q}) of type (3-1), where the path part is a-pP (resp. a-qP )
from a to p (resp. to q). This is a contradiction. (Figure 3 (3).) If {b, c, p} (or {b, c, q}) exists, then
look for an edge {r, s} on the subpath c-b

P
of P from c to b nearest to c such that an FW -triangle

{a, r, s} or {b, r, s} exists in Γ[W ]. If there exists no such edge {r, s}, then Γ[W \ {a}] contains an
FW -triangle-path connecting the apex vertex and the bottom edge of the non-FW -triangle {b, c, p}
(resp. {b, c, q}) of type (3-1), where the path part is the path c-b

P
. (Figure 3 (4).) If {b, r, s} exists

for the nearest {r, s}, then Γ[W \ {a}] contains an FW -triangle path connecting the apex vertex and
the bottom edge of the non-FW -triangle {b, c, p} (resp. {b, c, q}) of type (3-1), where the path part
is c-rP together with the edge {r, b}. (Figure 3 (5).) If {b, r, s} does not exist but {a, r, s} exists for
the nearest {r, s}, then Γ[W \ {b}] contains an FW -triangle path connecting the apex vertex and the
bottom edge of the non-FW -triangle {a, c, f} of type (3-1), where the path part is c-rP together with
the edge {a, r}. (Figure 3 (6).) All these cases leads us to a contradiction.

[Case 2] By Corollary 2.12 and the existence of {a, b, c} and {c, f, g}, we can assume without loss
of generality that {a, c, f} exists in Γ[W ]. The rest of the argument is the same as Case 1 by replacing
the edge {f, g} of P by the edges {f, c}-{c, g}, and we are lead to a contradiction.

Thus we have shown that pure2(Γ[W ]) has no non-FW -triangle of type (3-0).

On the other hand, pure2(Γ[W ]) is a shellable pure 2-dimensional complex and thus is simply
connected, and it has a cycle consisting of exactly one non-FW -edge {z, x} and a path of FWF -edges
connecting z and x. Hence, by Lemma 3.3, it should contain some non-FW -triangles of type other
than (3-1). Since all the vertices of W are FW -vertices, such non-FW -triangles should be of type (3-0)
by Lemma 3.1. This is a contradiction.
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Figure 3: Several subcases for Case 1.

As a corollary, we immediately have the following.

Corollary 3.6. If a pure 2-dimensional simplicial complex is hereditary-shellable, then it is extendably
shellable.

4 Matroid complexes and vertex decomposability

A matroid complex is a pure simplicial complex such that the restriction to any subset is pure. This
definition of a matroid complex coincides with the simplicial complex formed by the independent sets
of a matroid. A k-dimensional matroid complex corresponds to a matroid of rank k + 1. See [2].

The following comes from the fact that every matroid complex is shellable ([2, 10]).

Proposition 4.1. Every matroid complex is hereditary-shellable.

By this, hereditary-shellable simplicial complexes can be seen as a kind of generalization of ma-
troids. For matroid complexes, Björner and Eriksson [3] showed the following.

Theorem 4.2. ([3]) 2-dimensional matroid complexes (i.e., matroid complexes of rank 3) are extend-
ably shellable.

Our Theorem 3.5 is a generalization of this theorem: Theorem 4.2 follows from Corollary 3.6
together with Proposition 4.1 and the fact that matroid complexes are pure.

On the other hand, Tracy Hall [11] showed the following.

Theorem 4.3. ([11]) There exists an 11-dimensional matroid complex that is not extendably shellable.

(The example provided in [11] is a matroid complex consisting of the facets of a 12-dimensional
crosspolytope.) This implies that our Theorem 3.5 and Corollary 3.6 can not be extended to general
dimensions.
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Remark. The generalization of Theorem 3.5 and Corollary 3.6 to higher dimensions is open even for
the case of dimension 3. Especially, it is even unknown whether every 3-dimensional uniform matroid
complex is extendably shellable or not. (Here, a uniform matroid complex of dimension k is a simplicial
complex that has all the subsets of size k + 1 of its vertex set as its facets. This corresponds to a
uniform matroid of rank k + 1.)

Vertex decomposability is another property that strengthens shellability. The definition is as
follows.

Definition 4.4. ([5]) A simplicial complex Γ is vertex decomposable if either of the following holds.
(a) Γ has only one facet.
(b) There exists x ∈ V such that linkΓ({x}) and Γ[V \ {x}] are both vertex decomposable, and no
facet of linkΓ({x}) is a facet of Γ[V \ {x}].

Note that this definition is the generalized version that can be applied for nonpure complexes,
proposed in [5]. Especially, when a simplicial complex Γ is restricted to be pure, the condition (b) of
vertex decomposability is simplified as follows: (b’) there exists a vertex x such that linkΓ(x) is vertex
decomposable and Γ[V \ {x}] is pure and vertex decomposable, which coincides with the classical
definition of [10]. The vertex x in the condition (b) is called a shedding vertex.

As shown in [5, Theorem 11.3], vertex decomposable simplicial complexes are shellable. On the
other hand, for matroid complexes the following is well-known.

Theorem 4.5. ([10]) Matroid complexes are vertex decomposable.

In view of the fact that Theorem 4.2 is strengthened into Corollary 3.6, it is natural to ask whether
Theorem 4.5 can be strengthened for pure hereditary-shellable complexes or not. But, in the following
example, we see that this is not possible.

Example 4.6. We give an example of a pure 2-dimensional simplicial complex that is hereditary-
shellable but not vertex decomposable. Our example is a pure 2-dimensional simplicial complex such
that the deletion by arbitrary one vertex is non-pure. For such a simplicial complex, no vertex can be
a shedding vertex and thus the complex can not be vertex decomposable.

Prepare three partite sets A = {a1, a2, a3, a4}, B = {b1, b2, b3, b4}, and C = {c1, c2, c3, c4}, and
define a simplicial complex Γ on the set of twelve vertices A ∪ B ∪ C with the following facets:

• {ai, bj , ck}(1 ≤ i, j, k ≤ 4), which we call the matroidal part, and

• the following twelve extra facets:
{a2, b1, b2}, {a2, a3, b2}, {a3, b2, b3}, {a3, a4, b3},
{b1, c1, c2}, {b1, b4, c2}, {b4, c2, c3}, {b4, b2, c3},
{c1, a3, a1}, {c1, c4, a1}, {c4, a1, a4}, {c4, c2, a4}.

It is easy to verify that the facets of the matroidal part form a matroid complex. The twelve extra
facets are depicted in Figure 4, where each facet is expressed by a triangle. In the figure, the vertices
with the same label are identified. In the following we observe this simplicial complex Γ satisfies the
required properties.
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Figure 4: A simplicial complex that is hereditary-shellable but not vertex decomposable

First, shellability of this simplicial complex Γ is verified as follows. The matroidal part of the
complex before adding extra facets is a matroid complex, so we can make a partial shelling consisting
of all the facets of the matroidal part. As for the twelve extra facets, each facet shares two edges with
the matroidal part. Therefore we can extend the partial shelling to the entire facets.

When a subset U ⊆ A∪B∪C intersects with all the three partite sets A, B, and C, the shellability
of the restriction Γ[U ] is shown in the same way. By such a subset U , the matroidal part is restricted to
a matroid complex of dimension 2, thus Γ[U ] has a partial shelling on this part. Each additional facet
either remains a 2-dimensional facet with two edges sharing with the matroidal part, or is restricted
to a face of smaller dimension that is not a facet. So it is easily verified that the partial shelling on
the matroidal part can be extended to the whole Γ[U ].

What remains is the case of Γ[U ] such that U is a subset of one of the sets A ∪ B, B ∪ C, or
A∪C. But we immediately see Γ[U ] is shellable for this case because each of the restrictions Γ[A∪B],
Γ[B ∪ C], and Γ[A ∪ C] are isomorphic to Γ3 of Example 2.8 that is hereditary-shellable. Therefore
any restriction to a subset is shellable, and hence Γ is hereditary-shellable.

On the other hand, the deletion of any one vertex is not pure, since for each vertex x there is a
facet {x, y, z} among the twelve extra facets such that two vertices y and z belong to the same partite
set different from the one x belongs to, while the facet {x, y, z} is the only one facet that contains the
edge {y, z}. (For example, for the vertex a1, there is a facet {c1, c4, a1}. After deleting a1, the edge
{c1, c4} will become a facet.) Therefore, in Γ there exists no vertex x that satisfies the condition (b’)
(nor (b)), and hence we conclude that Γ is not vertex decomposable.

The existence of this 2-dimensional example Γ shows that there are d-dimensional pure simplicial
complexes with the same property for all d ≥ 2: for new vertices v1, v2, . . . , vd−2 outside of A∪B ∪C,
v1∗v2∗· · ·∗vd−2∗Γ = {H1∪H2 : H1 ⊆ {v1, v2, . . . , vd−2}, H2 ∈ Γ}, i.e., the (d−2)-fold cone over Γ, is a
d-dimensional pure simplicial complex that is hereditary-shellable but not vertex decomposable, since
both hereditary-shellability and vertex decomposability are preserved under the operation of taking
cones.

We note that there are simplicial complexes that are vertex decomposable but not hereditary-
shellable: 〈{a, b}, {b, c}, {c, d}, {d, e}〉 for example.

Remark. In [9, Sec. 3], it is shown that, in the class of simplicial complexes of dimensions ≤ 2 and that
of flag complexes, the properties lying between hereditary-shellability and hereditary-sequential Cohen-
Macaulayness, or hereditary-partitionability, are all equivalent. On the other hand, our Example 4.6
shows that hereditary-shellability and hereditary-vertex decomposability are different in dimensions
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≥ 2. (In the class of flag complexes, the result of Woodroofe [14] implies that hereditary-shellability
and hereditary-vertex decomposability are equivalent, see also [9, Sec. 3].)

5 Pure skeletons of strong obstructions to shellability

The concept of obstructions to shellability is introduced by Wachs in [13].

Definition 5.1. A simplicial complex Γ on V is an obstruction to shellability if Γ is nonshellable and
Γ[U ] is shellable for every U ( V .

The difference between a hereditary-shellable complex and an obstruction to shellability is whether
the complex itself is shellable or nonshellable. There is a natural relation between these two concepts
that a simplicial complex is hereditary-shellable if and only if it has no obstructions to shellability as
its restrictions, see [9, Section 3].

In [9, Section 4], the following strengthened concept is introduced.

Definition 5.2. A simplicial complex Γ on V is a strong obstruction to shellability if Γ is nonshellable
and linkΓ[U ](A) is shellable for any U ⊆ V and A ∈ Γ unless W = U and A = ∅ (i.e., unless
linkΓ[U ](A) = Γ).

In other words, obstructions to shellability are minimal nonshellable complexes with respect to
restrictions, while strong obstructions to shellability are minimal nonshellable complexes with respect
to restrictions and links. The same concept is discussed in [15] under the name “dc-obstructions to
shellability”. Strong obstructions to shellability can be used, instead of obstructions to shellability,
for a characterization of hereditary-shellability as follows.

Proposition 5.3. ([9, Prop. 4.3]) A simplicial complex Γ on V is hereditary-shellable if and only if
linkΓ[U ](A) is not a strong obstruction to shellability for any U ⊆ V and A ∈ Γ[U ].

As is shown in [9, Prop. 4.2], strong obstructions to shellability are characterized by a weaker
condition as follows.

Proposition 5.4. ([9, Prop 4.2]) A simplicial complex Γ on V is a strong obstruction to shellability
if and only if Γ is nonshellable, Γ[U ] is shellable for any U ( V , and linkΓ(A) is shellable for any
A ∈ Γ with A 6= ∅.

All the obstructions to shellability (and thus all the strong obstructions to shellability) are deter-
mined for dimensions up to 2 in [9], but not many are known for dimensions ≥ 3. In this section, we
develop a discussion of the structure of strong obstructions to shellability using Theorem 3.5.

Lemma 5.5. For a strong obstruction to shellability Γ on V of dimension k ≥ 3, there is no subset
U ⊆ V such that pure2(pure2(Γ)[U ]) (= pure2(Γ[U ])) is the pure 2-skeleton of some 2-dimensional
obstruction to shellability.

Proof. Let ∆ = pure2(Γ) ∪ {{x, y} : x, y ∈ V }. First, we show that ∆ is hereditary-shellable.
Assume U ( V . Here, we have that pure2(∆[U ]) = pure2(Γ[U ]) is shellable since Γ[U ] is shellable

and by Lemma 2.4. We also have that pure1(∆[U ]) is connected. Hence ∆[U ] is shellable by Lemma 2.5.
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Let U = V . If ∆ is not shellable, then ∆[U ] = ∆ is a 2-dimensional obstruction to shellability.
Further, for any vertex v ∈ ∆,

link∆({v}) = link(pure2(Γ)∪{{x,y}:x,y∈V \{v}})({v}) = linkpure2(Γ)({v}) ∪ (V \ {v})

= pure1(linkΓ({v})) ∪ (V \ {v}).

Since Γ is a strong obstruction to shellability, pure1(linkΓ({v})) is shellable by Lemma 2.4, and thus
link∆({v}) is also shellable. For A ∈ ∆ with dimA > 0, it is clear that link∆(A) is shellable. Hence ∆
is a 2-dimensional strong obstruction to shellability. Thus we have that Γ is a k-dimensional simplicial
complex derived by adding some faces of dimensions from 3 to k to a 2-dimensional obstruction to
shellability ∆ and removing some edges. But, by checking the list of 2-dimensional strong obstructions
to shellability given in [9, Theorem 2.11], there is no 2-dimensional strong obstruction to shellability
that has places where 3- and higher dimensional faces can be added (i.e., in any 2-dimensional strong
obstructions, there is no subcomplex that forms the 2-dimensional skeleton of a higher dimensional
simplex), a contradiction. Hence we conclude that, for U = V , ∆[U ] = ∆ is shellable. Therefore, we
have shown that ∆[U ] is shellable for any U ⊆ V , hence is hereditary-shellable, as intended.

Now assume that pure2(pure2(Γ)[U ]) is the pure 2-skeleton of some 2-dimensional obstruction to
shellability for U ⊆ V . This implies that there exists a 2-dimensional obstruction to shellability Π that
is derived by adding some edges to pure2(Γ)[U ]. Since the simplicial complex derived by adding edges
to a 2-dimensional obstruction to shellability is again an obstruction to shellability ([9, Prop. 2.10]),
Π ∪ {{x, y} : x, y ∈ V } = pure2(pure2(Γ)[U ]) ∪ {{x, y} : x, y ∈ V } = ∆[U ] is an obstruction to
shellability, a contradiction.

Corollary 5.6. If Γ is a strong obstruction to shellability of dimension k ≥ 3, then pure2(Γ) is
shellable.

Proof. Assume pure2(Γ) is nonshellable. Let ∆ = pure2(Γ) ∪ {{x, y} : x, y ∈ V }. Then ∆ is non-
shellable by Lemma 2.4 since pure2(∆) = pure2(Γ), and thus there exists U ⊆ V with U 6= ∅ such
that ∆[U ] is an obstruction to shellability. Here, dim∆[U ] = 2 since there is no obstruction to shella-
bility of dimension 0, and the only one 1-dimensional obstruction to shellability is 〈{a, b}, {c, d}〉 (see
[13, Prop. 2]) that does not appear as ∆[U ]. Hence, pure2(∆[U ]) = pure2(pure2(Γ)[U ]) is the pure
2-skeleton of an obstruction to shellability, which contradicts Lemma 5.5.

The following theorem is an application of Theorem 3.5.

Theorem 5.7. For a strong obstruction to shellability Γ of dimension k ≥ 3, pure2(Γ) is extendably
shellable.

Proof. Let ∆ = pure2(Γ)∪{{x, y} : x, y ∈ V }. Then ∆ is hereditary-shellable by the argument in the
proof of Corollary 5.6. By Theorem 3.5, pure2(∆) = pure2(Γ) is extendably shellable.

As an application of this Theorem 5.7, we have the following theorem that describes the structure
of pure skeletons of 3-dimensional strong obstructions to shellability, which is the goal of our discussion
of this section.
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Theorem 5.8. For a 3-dimensional strong obstruction to shellability Γ, pure3(Γ) is nonshellable and
purei(Γ) is shellable for i ≤ 2.

Proof. pure0(Γ) is trivially extendably shellable, and pure1(Γ) is extendably shellable since pure1(Γ)
is connected (see [9, Lemma 2.8]). pure2(Γ) is also extendably shellable by Theorem 5.7. If pure3(Γ)
is shellable, then Γ becomes shellable by Proposition 2.14, a contradiction. Therefore, pure3(Γ) is
nonshellable.

The same statement holds for 2-dimensional (strong) obstructions to shellability by the list of
[9, Theorem 2.12]: for a 2-dimensional obstruction to shellability Γ, pure2(Γ) is nonshellable while
purei(Γ) is shellable for 0 ≤ i ≤ 1. Note that the statement of Theorem 5.8 is not true for non-strong
obstructions to shellability: {{a, b, c, d}, {a, b, e}, {c, d, e}} is a 3-dimensional obstruction to shellability
of which the pure 3-skeleton is shellable and the pure 2-skeleton is nonshellable.

One of the open questions is whether obstructions to shellability and obstructions to sequential
Cohen-Macaulayness coincide or not ([9, Question 4.5]). For this question, the answer is positive for
dimensions ≤ 2 ([9, Theorem 3.12]), but open for dimensions ≥ 3. The following may contribute for
attacking this question for dimension 3.

Corollary 5.9. Obstructions to shellability coincide with obstructions to sequential Cohen-
Macaulayness for dimension 3 if pure3(Γ) is not Cohen-Macaulay for all strong obstructions to shella-
bility Γ of dimension 3.

Proof. Obstructions to shellability coincide with obstructions to sequential Cohen-Macaulayness for
dimension 3 if all 3-dimensional strong obstructions to shellability are not Cohen-Macaulay by [9,
Theorem 4.7] with [9, Theorem 3.10]. For a 3-dimensional strong obstruction to shellability Γ and
0 ≤ i ≤ 2, purei(Γ) is shellable, hence Cohen-Macaulay, by Theorem 5.8. Thus Γ is sequentially
Cohen-Macaulay if and only if pure3(Γ) is Cohen-Macaulay. (A simplicial complex ∆ is sequentially
Cohen-Macaulay if and only if purei(∆) is Cohen-Macaulay for all 0 ≤ i ≤ dim∆. Note that pure
shellable complexes are Cohen-Macaulay, see [6, 7].)

By the corollary above, it is important to know what kind of 3-dimensional pure simplicial com-
plexes can appear as the pure 3-skeletons of strong obstructions to shellability. The following corollary
may be of some help for this line of study.

Corollary 5.10. For a 3-dimensional strong obstruction to shellability Γ, Γ̃ = Γ∪{{x, y, z} : x, y, z ∈
V } is also a 3-dimensional strong obstruction to shellability.

Proof. For U = V , Γ̃[U ] = Γ̃ is nonshellable by Lemma 2.4 together with the fact that pure3(Γ) is
nonshellable by Theorem 5.8.

Consider the case U ( V . Then pure3(Γ̃[U ]) is shellable since pure3(Γ̃[U ]) = pure3(Γ[U ]) and
Γ[U ] is shellable. Also we have that pure2(Γ̃[U ]) is extendably shellable by Theorem 4.2 since it is
a 2-dimensional uniform matroid complex, and that pure1(Γ̃[U ]) is extendably shellable since it is
connected. Hence Γ̃[U ] is shellable by Proposition 2.14. (In the proof, when purei(Γ̃[U ]) is empty, we
just assume it is extendably shellable and the proof works as well.)

The fact that link
eΓ(A) is shellable for every A ∈ Γ̃ with A 6= ∅ is clear.
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