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Abstract

In this paper, we discuss the relation between shellability, sequentially Cohen-
Macaulayness, and partitionability. Especially, our main concern is to see the
difference of these properties when we require heredity. For a property P, we say
a simplicial complex satisfies hereditary-P if the simplicial complex itself and all
the restrictions to subsets of its vertex set satisfy the property P, and we want
to see the difference between hereditary-shellability, hereditary-sequential Cohen-
Macaulayness, and hereditary-partitionability. In this paper we briefly review on
the relations and gaps between shellability, sequential Cohen-Macaulayness and
partitionability, as well as their hereditary versions. Additionally, we provide a dis-
cussion on relations between these properties and h-triangles, especially, relations
between partitionability and nonnegativity of h-triangles.

1 Introduction

Shellability is one of fundamental properties of simplicial complexes, studied in the area
of combinatorics related to commutative algebra and topology. During the previous
century, shellability and related properties are studied for pure simplicial complexes
(i.e., simplicial complexes all of whose facets have the same dimension), in relation
to polytopes or triangulations of manifolds (eg. [10, 14, 18]). But in recent days,
it is generalized to nonpure simplicial complexes by Björner and Wachs [2, 3], and
analogous theories are developed [2, 3, 4, 5]. In the study of shellability, its relation to
many other properties such as Cohen-Macaulayness, partitionability, and so forth, is
important. These related properties are also generalized to nonpure cases, and their
relations and gaps are also well studied.

This paper treats hereditary versions of these properties. For a property P of sim-
plicial complexes, we say a simplicial complex is hereditary-P if the simplicial complex
as well as all the restrictions to subsets of its vertex set satisfy the property P [8]. Our
main interest in this paper is the relation between hereditary-shellability, hereditary-
sequential Cohen-Macaulayness, and hereditary-partitionability. It should be noted
that matroid complexes are hereditary-pure simplicial complexes [1], which are
also hereditary-shellable, hereditary-sequential Cohen-Macaulayness, and hereditary-
partitionable. The view point to require the same property to all the restrictions
started from the work of Wachs on obstructions to shellability [15]. An obstruction to
a property P is a simplicial complex all of whose restrictions to its vertex set satisfies
P except that the simplicial complex itself does not satisfy P. There is a natural and
obvious relation between obstructions and hereditary properties: obstructions to P
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are forbidden complexes of hereditary-P simplicial complexes with respect to restric-
tions, that is, a simplicial complex is hereditary-P if and only if no obstructions to
P exist as its restrictions to subsets of the vertex set. The study of obstructions and
hereditary properties are found in [8, 9, 15, 16, 17], however not so many is known
currently. In Sections 2 and 3, we review what are known for the relations and gaps
between shellability, sequentially Cohen-Macaulayness and partitionability, and their
hereditary versions, mainly from the results of [8]. After that, in Section 4, we dis-
cuss nonnegativity of h-triangles and its use for showing the relations between these
properties.

2 Shellability and related properties

In this paper, we assume the simplicial complexes are finite. Finite simplicial complexes
can be treated as a set family on a finite set. Let V be a finite set. A simplicial complex
Γ is a subset of 2V satisfying that F ⊆ F ′ ∈ Γ implies F ∈ Γ. The underlying set
V is the vertex set of Γ. The elements of Γ are called faces and the maximal faces
with respect to inclusion are facets. The dimension of a face F is dimF = |F | − 1. A
simplicial complex is pure if all the facets have the same dimension. Remark that we
always assume ∅ ∈ Γ and dim ∅ = −1.

Shellability of simplicial complexes is a well-studied property, see [18, Lect. 8] for
example. In this paper we adopt the definition for nonpure simplicial complexes, see
[2, 3]. Here, a simplicial complex is shellable if its facets can be arranged into a sequence
F1, F2, . . . , Ft satisfying the following condition: (F1 ∪ F2 ∪ · · · ∪ Fk−1) ∩ Fk is a pure
simplicial complex of dimension dimFk − 1 for each 2 ≤ k ≤ t, where F is a simplicial
complex consisting of F and all its faces. This sequence of facets is called a shelling.
The following figure shows an example of a shellable simplicial complex and one of its
shelling. In the figure,the intersections (F1 ∪ F2 ∪ · · · ∪ Fk−1) ∩ Fk for 2 ≤ k ≤ 5 are
indicated.

F1F1

F2
F2

F3

F4

F5

F4

F3
F5

0

Related to shellability, the following implications are well-known.

vertex decomposable ⇒ shellable ⇒⇒
sequentially Cohen-Macaulay

partitionable

Sequential Cohen-Macaulayness is a property defined in terms of commutative algebra
or topology, see [5, 14] for example. We here use the definition in terms of homology
([5]) as follows. A simplicial complex Γ is Cohen-Macaulay if H̃i(linkΓ(F )) = 0 unless
i = dim linkΓ(F ), where H̃i denotes the i-dimensional reduced homology group, and
linkΓ(F ) = {H ∈ Γ : H ∩ F = ∅, H ∪ F ∈ Γ} is the link of F in Γ. (Note that
linkΓ(F ) = Γ if F = ∅ ∈ Γ.) A simplicial complex Γ is sequentially Cohen-Macaulay if
purei(Γ) is Cohen-Macaulay for all i, where purei(Γ), the i-dimensional pure-skeleton
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of Γ, is the subcomplex consisting of all the i-dimensional faces and its subfaces of Γ
(following figure). By this definition, the implication “shellable ⇒ sequentially Cohen-
Macaulay” is easy to observe from the facts that pure shellable simplicial complexes
are Cohen-Macaulay and that every purei(Γ) is shellable if Γ is shellable ([2]).

pure2(Γ) pure1(Γ) pure0(Γ)Γ

Partitionability is another well-known property implied by shellability. A simpli-
cial complex Γ is partitionable if Γ is partitioned into the form Γ =

∪̇
[ψ(F ), F ], where

[H,F ] = {A ∈ Γ : H ⊆ A ⊆ F} is the interval from H to F , and the union is taken over
all facets F of Γ with ψ(F ) some face of F . The implication “shellable ⇒ partition-
able is well-known for pure simplicial complexes, see [18, Lect. 8] for comprehensible
explanation. The reasoning for nonpure simplicial complexes is completely the same:
if Γ is shellable with a shelling F1, F2, . . . , Ft, then a partition is given by setting ψ(Fk)
to be the minimal face of Fk that is not contained in F1 ∪ F2 ∪ · · · ∪ Fk−1. In other
words, if we consider an incremental construction of Γ by adding facets one by one
according the shelling, then [ψ(Fk), Fk] equals to the set of newly added faces when
k-th facet Fk is added. In the following figure, for the shellable simplicial complex of
the example before, the partition constructed from the shelling is shown both on the
face poset (the partially ordered set over Γ ordered by inclusion relation) and on the
geometric figure. (In the geometric figure, the empty set is explicitly indicated in order
to prevent confusion. We use this geometric expression to show partitions for examples
in Section 4.) However, it should be noted that there is a big difference between pure
cases and nonpure cases. This will be explained in Section 4.
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A simplicial complex is vertex decomposable if either of the following holds.
(a) Γ has only one facet.
(b) There exists x ∈ V such that linkΓ({x}) and Γ[V \{x}] are both vertex decompos-
able, and no facet of linkΓ({x}) is a facet of Γ[V \{x}]. Here, Γ[V \{x}] is the simplicial
complex consisting of the faces contained in V \{x}. (Γ[V \{x}] is the restriction of Γ to
V \{x}, used later in Section 3.) This definition of vertex decomposability is a version
for nonpure simplicial complexes, see [3]. The fact that vertex decomposable simplicial
complexes are shellable can be shown by induction ([3], as same as the classical pure
cases [13].)

For the difference between the properties in the hierarchy of implications above,
the following are known.
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〈〈0-dimensional case〉〉
It is trivial that all 0-dimensional simplicial complexes are vertex decomposable,
shellable, sequentially Cohen-Macaulay, and partitionable.

〈〈1-dimensional case〉〉
It is easy to observe that a 1-dimensional simplicial complex is partitionable if and
only if at most one 1-dimensional connected component is a tree. On the other hand,
a 1-dimensional simplicial complex is sequentially Cohen-Macaulay if and only if it has
only one 1-dimensional connected component, and such a simplicial complex is shellable
and vertex decomposable. Hence, vertex decomposability, shellability, and sequential
Cohen-Macaulayness coincide in dimension 1, while partitionability and these three
properties differ from dimension 1.

〈〈dimensions ≥ 2〉〉
2-dimensional shellable simplicial complexes that are not vertex decomposable can
be found in [11]. 2-dimensional simplicial complexes that are sequentially Cohen-
Macaulay but not shellable are provided in [14, Sec. III.2, p.84]: triangulations of the
dunce hat are such examples. (See [7] for more detailed examples of dimension 2.) Such
examples for dimensions ≥ 3 can be constructed by taking cones over 2-dimensional
examples.

The difference between sequential Cohen-Macaulayness and partitionability has
been a difficult problem. That the partitionability does not imply sequential Cohen-
Macaulayness is easily observed from the 1-dimensional case, but whether sequential
Cohen-Macaulayness implies partitionability or not has been an open problem. From
1980’s, it was conjectured that Cohen-Macaulay (= pure and sequentially Cohen-
Macaulay) simplicial complexes are partitionable, proposed by Stanley and Garsia
independently. But recently, Duval, Goeckner, Klivans, and Martin [6] disproved this
conjecture. They provided counterexamples of dimension 3, and they can be lifted to
higher dimensions by taking cones. By their result, now it is known that there is no
implication relation between (sequential) Cohen-Macaulayness and partitionability in
dimensions ≥ 3. Whether there exist such counterexamples in dimension 2 or not is
left open.

3 Hereditary properties and obstructions

For a simplicial complex Γ over a vertex set V (Γ), the restriction of Γ to a subset W ⊆
V (Γ), denoted by Γ[W ], is the subcomplex consisting of all the faces of Γ contained in
W . We say a simplicial complex Γ satisfies hereditary-P if Γ[W ] satisfies the property
P for every W ⊆ V (Γ). From the hierarchy given in the previous section, we naturally
have the following implications:

hereditary-
vertex decomposable

⇒ hereditary-shellable ⇒⇒

hereditary-sequentially
Cohen-Macaulay

hereditary-partitionable

Important example is a matroid complex. A matroid complex is a simplicial com-
plex whose faces form the independent sets of a matroid. It is also known that a matroid
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complex is a simplicial complex every restriction is pure ([1]). That is, a matroid com-
plex is a hereditary-pure simplicial complex. Also, it is well-known that matroid com-
plexes are vertex decomposable ([1]). Since every restriction of a matroid complex is
again a matroid complex, one can observe that a matroid complex is hereditary-vertex
decomposable, hereditary-shellable, hereditary-sequentially Cohen-Macaulay, and also
hereditary-partitionable. One more example is an independence complex of a chordal
graph. Given a graph, an independence complex (or a flag complex ) of the graph is
a simplicial complex whose faces are independent sets of the graph. Independence
complexes of chordal graphs are hereditary-vertex decomposable, see [16]. Hence they
are also hereditary-shellable, hereditary-sequentially Cohen-Macaulay, and hereditary-
partitionable.

For this hereditary version of the hierarchy, the situation of the gaps between prop-
erties are different. In [9], hereditary-vertex decomposability is shown to be different
from hereditary-shellability in dimensions ≥ 2, as same as the normal case. But, in
[8] it is shown that hereditary-shellability, hereditary-sequential Cohen-Macaulayness
and hereditary-partitionability coincide in dimension 2. Currently, whether these three
properties differ or not in dimensions ≥ 3 is open. (In [8], it is shown that these four
hereditary properties are equivalent for the class of flag complexes.)

In the proof of showing the equivalence of the three properties, hereditary-
shellability, hereditary-sequential Cohen-Macaulayness and hereditary-partitionability
for dimensions ≤ 2 in [8], the key concepts are obstructions that are forbidden struc-
tures of hereditary properties. For a property P of simplicial complexes, a simplicial
complex Γ is an obstruction to P if Γ does not satisfy P but Γ[W ] satisfies P for
all W ( V (Γ). This concept of obstructions is introduced by Wachs [15] in which
obstructions to shellability is investigated intensively. (Obstructions to purity is also
studied.)

The following is obvious but important.

Proposition 3.1. ([8]) A simplicial complex Γ is hereditary-P if and only if there
exists no W ⊆ V (Γ) such that Γ[W ] is an obstruction to P.

This implies that two properties P and Q are equivalent if and only if the set of
obstructions to P and that to Q coincide. More generally, if X is a class of simplicial
complexes closed under restrictions, we can see that two properties P and Q are
equivalent in the class X if and only if the set of obstructions to P and that to Q
coincide in X . (Typically, in the following, we set X to be the class of simplicial
complexes of dimensions at most d.)

If there exists an implication relation between the two properties, we have the
following useful proposition.

Proposition 3.2. ([8]) Let X be a class of simplicial complexes closed under restric-
tions. If P ⇒ Q, then the set of obstructions to P and that to Q coincide in X if and
only if all the obstructions to P in X do not satisfy Q.

By this proposition, to show the equivalence of the three properties, hereditary-
shellability, hereditary-sequential Cohen-Macaulayness and hereditary-partitionability,
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the key is to list (or characterize) all the obstructions to shellability (in the class X ).
The main result of [8] is to determine the list of all the obstructions to shellability of
dimension at most 2.

Theorem 3.3. ([8]) The obstructions to shellability of dimension ≤ 2 are the 1-
dimensional obstruction (0) of the following figure, and the simplicial complexes ob-
tained by adding zero or more edges to one of the complexes (1a)–(1c), (2), (3a)–(3e),
(4a)–(4c) of the figure. (In the figure, the pairs of edges indicated by the arrows are
identified.)

a

a

b

b

a

b

a

b

a

b a

b

(3d)

(3a) (3b) (3c)

(3e)

(4a) (4c)(4b)

(1b) (1c) (2)(1a)

(0)

The 1-dimensional obstruction to shellability was already identified in Wachs [15].
In Wachs [15], it is shown that only finitely many 2-dimensional obstructions to shella-
bility exist. The problem to determine all the obstructions to shellability of dimension
2 was initially proposed by her.

For 3-dimensional and higher case, the list of obstructions to shellability or the
characterization is not known. Wachs [15] asks whether the number of obstructions to
shellability of dimension d is finite for each d (d ≥ 3), and this is still left open.

Since all the obstructions to shellability determined in Theorem 3.3 are not sequen-
tially Cohen-Macaulay nor partitionable, we have the following corollary.

Corollary 3.4. ([8]) The set of obstructions to shellability, that to sequential Cohen-
Macaulayness, and that to partitionability coincide in dimensions ≤ 2. Hence the
three properties, hereditary-shellability, hereditary-sequential Cohen-Macaulayness,
and hereditary-partitionability are all equivalent in dimensions ≤ 2.

The following question is asked in [8] and it is still open.
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Question. Do the set of obstructions to shellability, that to sequential Cohen-
Macaulayness, and that to partitionability coincide for all dimensions? Equivalently,
do the three properties hereditary-shellability, hereditary-sequential Cohen-Macaulay,
and hereditary-partitionability are equivalent for all dimensions?

For Corollary 3.4, it is easy to see that the obstructions to shellability of dimen-
sions ≤ 2 of Theorem 3.3 are not sequentially Cohen-Macaulay. On the other hand,
the proof for showing they are not partitionable given in [8, Prop. 3.8] is rather incom-
prehensive.

4 Nonnegativity of h-triangles

Proposition 3.2 further implies the following trivially.

Corollary 4.1. ([8, p. 1620]) Let X be a class of simplicial complexes closed under
restriction, and the properties P,Q,R satisfies P ⇒ Q ⇒ R. If hereditary-P and
hereditary-R are equivalent in X , then hereditary-Q is also equivalent to them in X .

When trying to show that all the three properties, hereditary-shellability,
hereditary-sequential Cohen-Macaulayness and hereditary-partitionability coincide,
since there is no implication relation between sequential Cohen-Macaulayness and par-
titionability as is mentioned in Section 2, a possible strategy is to look for a property
Q satisfying

shellable ⇒⇒
sequentially Cohen-Macaulay

partitionable

⇒
⇒ Q ,

hereditary-shellable ⇒⇒

hereditary-sequentially
Cohen-Macaulay

hereditary-partitionable

⇒
⇒ hereditary-Q ,

such that hereditary-shellability and hereditary-Q coincide.

A possible candidate for such a property Q will be nonnegativity of h-vectors, but
we need a suitable modification. After reviewing some basic facts on h-vectors, we give
a candidate of shch Q in the following.

For a simplicial complex Γ of dimension d, the f-vector is a sequence
(f−1, f0, f1, . . . , fd) of integers, where fi is the number of i-dimensional faces of Γ.
The h-vector of Γ is a sequence (h0, h1, . . . , hd+1) of integers defined by

hi =
i∑

j=0

(−1)i−j

(
d+ 1 − j

d+ 1 − i

)
fj−1 . (1)

In other word, if we define a polynomial f(x) = f−1x
d+1+f0x

d+· · ·+fdx
0, then h(x) =

h0x
d+1 + h1x

d + · · · + hd+1x
0 satisfies h(x) = f(x− 1). (For a convenient calculation,

we can use the “Stanley’s trick,” see [18, Lect. 8] for example.) The h-vectors are
commonly used in the study of pure simplicial complexes. Note that (h0, h1, . . . , hd+1)
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is given from (f−1, f0, f1, . . . , fd) by a non-singular linear transform. Especially, there
is a one-to-one correspondence between (h0, h1, . . . , hd+1) and (f−1, f0, f1, . . . , fd). The
inverse transform is given by

fi−1 =
i∑

j=0

(
d+ 1 − j

d+ 1 − i

)
hj . (2)

Among the properties of h-vectors of pure simplicial complexes, the following two
properties are well-known.

Proposition 4.2. If a pure simplicial complex is (sequentially) Cohen-Macaulay, then
its h-vector is nonnegative.

Proposition 4.3. If a pure simplicial complex is partitionable, then its h-vector is
nonnegative.

For the explanation of Proposition 4.2, we refer [10], [14]. Roughly, hi are nonneg-
ative because they coincide with the dimensions of some algebra.

For Proposition 4.3, there is a comprehensive explanation in [18, Lect. 8], but
we also briefly explain here. Let Γ be a d-dimensional pure partitionable simplicial
complex with a partition

∪̇
[ψ(F ), F ], where F runs all the facets of Γ. Here, in one

interval [ψ(F ), F ], the number of (i − 1)-dimensional faces (= subsets of F of size
|ψ(F )|) equals to(

|F | − |ψ(F )|
i− |ψ(F )|

)
=

(
d+ 1 − |ψ(F )|
i− |ψ(F )|

)
=

(
d+ 1 − |ψ(F )|
d+ 1 − i

)
when i ≥ |ψ(F )|, and equals to 0 if i < |ψ(F )|. Hence,

fi−1 =
∑
F

(
d+ 1 − |ψ(F )|
d+ 1 − i

)
=

d∑
j=0

(
d+ 1 − j

d+ 1 − i

)
pj ,

where pj = |{ψ(F ) : dimψ(F ) = j− 1}|. Here, by comparing with the formula (2), we
have hj = pj , which implies that hj ≥ 0 for each j.

Important remark is that this explanation for nonnegativity relies on the fact that
all the facets F of Γ satisfy |F | = d+1. In fact, it is not difficult to find counterexamples
for nonpure simplicial complexes.

Example 4.4. In the following figure, the simplicial complex of 4 vertices is parti-
tionable: it has a partition

[∅, abc]∪̇[bd, d]∪̇[cd, cd] ,

as indicated in the right of the figure.

0
a

b

c

d

For this simplicial complex, the f -vector is (1, 4, 5, 1), and the h-vector is (1, 1, 0,−1).
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As this example shows, partitionable complexes can have negative elements in its
h-vector if it is nonpure. This example is sequentially Cohen-Macaulay, so we can
also see that sequentially Cohen-Macaulay complexes can have negative elements in
its h-vector if it is nonpure.

For nonpure simplicial complexes, we can use h-triangles introduced in [2] instead
of h-vectors. For a simplicial complex Γ, the f -triangle of Γ is defined as

fk,i = the number of faces of Γ of degree k and dimension i− 1

for 0 ≤ i ≤ k ≤ d + 1, where the degree of a face H is the maximum dimension of a
face of Γ that contains H. The h-triangle of Γ is defined by

hk,i =
i∑

j=0

(−1)i−j

(
k − j

i− j

)
fk,j .

(We refer this as the h-transform of f . For a convenient calculation, we can use
“Stanley’s trick” for each row.) For example, the f -triangle and the h-triangle of the
simplicial complex in Example 4.4 are as follows:

f =


0
0 0
0 1 2
1 3 3 1

 , h =


0
0 0
0 1 1
1 0 0 0

 .

The nonnegativity of h-vectors of pure Cohen-Macaulay simplicial complex (Propo-
sition 4.2) is generalized for the nonpure case as follows.

Proposition 4.5. ([5]) If a simplicial complex is sequentially Cohen-Macaulay, then
its h-triangle is nonnegative.

Proof. In [5] it is shown that (hk,i)0≤i≤k≤d+1 is the h-triangle of a sequentially Cohen-
Macaulay simplicial complex if and only if it is the h-triangle of a shellable simplicial
complex, while the h-triangles of shellable simplicial complexes are nonnegative as
shown in [2].

On the other hand, unfortunately, the case of partitionability (Proposition 4.3) is
not generalized to nonpure case.

Example 4.6. In the following figure, the simplicial complex of 7 vertices is parti-
tionable: it has a partition

[c, abc]∪̇[d, bcd]∪̇[e, cde]∪̇[f, def ]∪̇[a, efa]∪̇[b, fab]∪̇[∅, g] ,

as indicated in the right of the figure.

a

c

b d

ef

g 0
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For this simplicial complex, the f -triangle and and the h-triangle are as follows:

f =


0
0 1
0 0 0
1 6 12 6

 , h =


0
0 1
0 0 0
1 3 3 −1

 .

As this example shows, for nonpure case, partitionability does not imply nonnega-
tivity of h-triangles.

Since partitionability does not imply nonnegativity of h-triangle, “to have nonneg-
ative h-triangle” cannot be considered as a candidate of the property Q we are looking
for. However, we have the following weaker nonnegativity claim of h-triangles.

Definition 4.7. For two nonnegative triangular arrays f = (fk,i)0≤i≤k≤d+1 and f ′ =
(f ′k,i)0≤i≤k≤d+1, we define f � f ′ if the following hold.

(i) fii = f ′ii for each 0 ≤ i ≤ d+ 1,

(ii) for each 0 ≤ i ≤ d+ 1,∑d+1
j=k fj,i ≥

∑d+1
j=k f

′
j,i for each k with i+ 1 ≤ k ≤ d+ 1, and∑d+1

j=i fj,i =
∑d+1

j=i f
′
j,i .

Proposition 4.8. If a d-dimensional simplicial complex Γ is partitionable, then there
is a nonnegative triangular array f ′ = (f ′k,i)0≤i≤k≤d+1 with f(Γ) � f ′ such that hf ′ is
nonnegative, where f(Γ) is the f -triangle of Γ and hf ′ is the h-transform of f ′.

For the simplicial complex in Example 4.6, we have

f =


0
0 1
0 0 0
1 6 12 6

 �


0
1 1
0 0 0
0 6 12 6

 = f ′, hf ′ =


0
1 0
0 0 0
0 6 0 0

 ≥ 0.

Instead of giving a formal proof for Proposition 4.8, we explain the meaning of “�”
and the reason why the statement holds. (After that, the proof will be obvious.)

First, let us see what the definition of the relation “�” means. For a set of sequences
of nonnegative integers with a constant total sum, consider an ordering defined by
(a0, a1, . . . , an) �′ (b0, b1, . . . , bn) if and only if

∑n
j=i aj ≥

∑n
j=i bj for each 1 ≤ i ≤ n.

Under this ordering, a sequence is larger if elements of larger indices have more weight.
For example, we have (a1, . . . , ai, . . . , aj , . . . , an) �′ (a1, . . . , ai + t, . . . , aj − t, . . . , an) if
t > 0. Our ordering � is a variation of this, where the condition (ii) of Definition 4.7
requires that each column of the triangular array is required to be ordered by this
ordering simultaneously. So, we have f � f ′ if f ′ is derived from f by moving some
positive value from lower element to upper element in the same column. For example,
in the example above, we have f � f ′ since “1” is moved from f3,0 to f ′1,0.

The definition of f -triangles and h-triangles in relation to partitions is well-
understood by considering the shellable case. If a d-dimensional simplicial complex
Γ is shellable, by the Rearrangement Lemma ([2, Th. 2.6]), there is a shelling such
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that larger dimensional facets come first. According to this rearranged shelling, a par-
tition is constructed as follows. First, ψ(F ) is assigned to each d-dimensional facets F
such that pured(Γ) is partitioned. Next, ψ(F ) is assigned to each (d− 1)-dimensional
facets such that the partition is extended to pured(Γ) ∪ pured−1(Γ). Then proceed to
(d−2)-dimensional facets, (d−3)-dimensional facets, and so forth. In such a partition,
the h-triangle is given so that hk,i equals to the number of k-dimensional facets such
that ψ(F ) is i-dimensional. (This follows from the fact that fk,i equals to the number
of i-dimensional faces of purek(Γ)\(

∪d
l=k+1 purel(Γ)), and the same calculation as the

pure case.)
However, to have such a partition is of course very special. For example, in the

partition of Example 4.6, the empty set is belonging to an interval of 0-dimensional
facet. (If the partition is constructed according the rearranged shelling, the empty
set should belong to an interval of d-dimensional facet.) Further, there even exist
examples of partitionable simplicial complexes such that the number of k-dimensional
facets such that ψ(F ) is i-dimensional is not determined.

Example 4.9. The simplicial complex of the following figure has two different parti-
tions as shown.

d

e
a

cb

0
0

First partition is
[∅, abd]∪̇[c, bcd]∪̇[ac, acd]∪̇[e, de],

and the second partition is

[b, abd]∪̇[c, bcd]∪̇[a, acd]∪̇[∅, de].

If we put the number of k-dimensional facets such that ψ(F ) is i-dimensional in the
(k, i)-element of triangular arrays, these two partitions corresponds to the following
two different arrays. 

0
0 0
0 1 0
1 1 1 0

 ,


0
1 0
0 0 0
0 3 0 0

 .

In the second partition of Example 4.9, the intervals of 2-dimensional facets do not
cover pure2(Γ) and left the vertex d, which is covered by an interval of 1-dimensional
facet.

As these examples indicate, in general, partitions can be constructed as follows.
First, ψ(F ) is assigned to each d-dimensional facets F so that pured(Γ) will be covered
by the intervals [ψ(F ), F ], but some faces of pured(Γ) may be left uncovered. Next,
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ψ(F ) is assigned to each (d−1)-dimensional facets F so that pured−1(Γ) together with
the faces left uncovered before will be covered, but some faces may be left uncovered
again. Then proceed to (d−2)-dimensional facets, then (d−3)-dimensional facets, and
so forth. Here, in the f -triangle, if an i-dimensional face in purek(Γ)\ (

∪d
l=k+1 purel(Γ))

is covered by a j-dimensional facet with j < k, this corresponds moving a value 1 from
fk,i to f ′j,i, which makes f � f ′. In the end of this process, if we apply h-transform
to the final f ′, we get a triangular array showing the number of k-dimensional facets
such that ψ(F ) is i-dimensional in the (k, i)-element, which assures the transformed
triangular array is nonnegative.

Here, during the process above we always have i < j, since the i-dimensional face
is not a facet and it is contained in an interval whose top is a j-dimensional facet. This
implies that the diagonal elements fi,i do not change during the process. This is the
reason the condition (i) in the Definition 4.7 is added.

Let us say that a simplicial complex Γ has a dominated h-triangle h′ if h′ is an
h-transform of a triangular array f ′ such that f ′ � f(Γ). By Propositions 4.5 and
4.8, “to have a nonnegative dominated h-triangle” is a property commonly implied
by sequential Cohen-Macaulayness and by partitionability. But, unfortunately, this
property is too weak for the property Q we are looking for. The simplicial complex
(3e) of Theorem 3.3 has the following f -triangle and h-triangle:

f =


0
0 0
0 0 0
1 5 10 6

 , h =


0
0 0
0 0 0
1 2 3 0

 .

The h-triangle itself is nonnegative, hence trivially has nonnegative dominated h-
triangle. This means that hereditary-shellability and hereditarily “to have nonnegative
dominated h-triangle” do not coincide.

This (3e) of Theorem 3.3 has a vertex (the vertex in the center of the figure in
the theorem) such that its neighbor (= link of the vertex) has the structure of the
obstruction (0) of Theorem 3.3 (the 1-dimensional obstruction to shellability with
4 vertices and 2 disjoint edges), and this immediately implies that this (3e) is not
sequentially Cohen-Macaulay nor partitionable.

In general, we say a property P is link-preserving if Γ satisfies P implies that
linkΓ(F ) satisfies P for all F ∈ Γ. (Recall that linkΓ(F ) = {H ∈ Γ : H∩F = ∅, H∪F ∈
Γ} is the link of the face F in Γ.) It is known that vertex decomposability, shellability,
sequential Cohen-Macaulayness and partitionability are all link-preserving ([3, 5, 8,
12]). Since the obstruction (3e) has a vertex whose link is not sequentially Cohen-
Macaulay nor partitionable, we can immediately find it is not sequentially Cohen-
Macaulay nor partitionable. (The obstruction (0) is obviously not sequentially Cohen-
Macaulay nor partitionable.)

On the other hand, the property “to have nonnegative dominated h-triangle” is
not link-preserving, as the obstruction (3e) shows. So, for our purpose, we strengthen
the property as follows.
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property SNNH : every link has nonnegative h-triangle,
property SNNDH : every link has nonnegative dominated h-triangle.

(“S” stands for “strongly”, which means “to require for all links” as sams as in the
remark after Theorem 4.10.) We have the following implications by Propositions 4.5
and 4.8 together with the fact that the properties are link-preserving as remarked
above.

shellable ⇒⇒
sequentially Cohen-Macaulay ⇒ SNNH

partitionable

⇒
⇒ SNNDH ,

hereditary-
shellable

⇒⇒

hereditary-sequentially
Cohen-Macaulay

⇒ hereditary-
SNNH

hereditary-partitionable

⇒
⇒

hereditary-
SNNDH .

That is, SNNDH is a candidate property for the Q we are looking for. If we
can show hereditary-shellability and hereditary-SNNDH coincide, all the properties
between them also coincide. In fact, this is the case for dimensions ≤ 2.

Theorem 4.10. For dimensions ≤ 2, hereditary-shellability and hereditary-SNNDH
coincide.

Proof. We check each 2-dimensional simplicial complex of Theorem 3.3 does not satisfy
the property SNNDH. Then the statement follows by Proposition 3.2.

(0): The f -triangle is

 0
0 0
1 4 2

 . Since the diagonal elements are fixed, there are

only two choices for f ′ with f � f ′: the third row of f ′ is (1, 4, 2) or (0, 4, 2).
The h-transform of these are (1, 2,−1) and (0, 3,−1). Hence, for neither choice
the h-transform is not nonnegative.

(1a)-(1c): The f -triangle is


0
0 0
0 0 3 + α
1 6 6 2

 , where 0 ≤ α ≤ 6 for (1a) and 1 ≤ α ≤ 6

for (1b) and (1c). In f ′ with f � f ′, the fourth row is (a, 6−b, 6, 2) with a ∈ {0, 1}
and 0 ≤ b ≤ 6. By the h-transform, this row becomes (a,−3a− b+ 6, 3a+ 2b−
6, 2−a−b). Here, 3a+2b−6 and 2−a−b cannot be nonnegative simultaneously.
Hence this f -triangle does not have nonnegative dominated h-triangles.

(2),
(3a)-(3e): The obstructions (2) and (3a)-(3e) have a vertex whose link is isomorphic to (0),

hence do not satisfy the property SNNDH.

(4a): The f -triangle is


0
0 0
0 0 0
1 5 10 5

 . In f ′ with f � f ′, the fourth row is (a, 5 −

b, 10, 5) with a ∈ {0, 1} and 0 ≤ b ≤ 5. By the h-transform, this row becomes
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(a,−3a− b+5, 3a+2b,−a− b). It is required that a = b = 0 for the h-transform
to be nonnegative. On the other hand, if a = b = 0, then the second row of f ′ is
(1, 0) whose h-transform is (1,−1), or the third row is (1, 0, 0) whose h-transform
is (1,−2, 1). Hence this f -triangle does not have nonnegative dominated h-
triangles.

(4b): The f -triangle is


0
0 0
0 0 α
1 6 12 6

 , where 0 ≤ α ≤ 3. In f ′ with f � f ′, the

fourth row is (a, 6 − b, 12, 6) with a ∈ {0, 1} and 0 ≤ b ≤ 6. By the h-transform,
this row becomes (a,−3a− b+ 6, 3a+ 2b,−a− b). It is required that a = b = 0
for the h-transform to be nonnegative. On the other hand, if a = b = 0, then
the second row of f ′ is (1, 0) whose h-transform is (1,−1), or the third row is
(1, 0, α) whose h-transform is (1,−2, α+ 1). Hence this f -triangle does not have
nonnegative dominated h-triangles.

(4c): The f -triangle is


0
0 0
0 0 α
1 7 14 7

 , where 0 ≤ α ≤ 7. In f ′ with f � f ′, the

fourth row is (a, 7 − b, 14, 7) with a ∈ {0, 1} and 0 ≤ b ≤ 7. By the h-transform,
this row becomes (a,−3a− b+ 7, 3a+ 2b,−a− b). It is required that a = b = 0
for the h-transform to be nonnegative. On the other hand, if a = b = 0, then
the second row of f ′ is (1, 0) whose h-transform is (1,−1), or the third row is
(1, 0, α) whose h-transform is (1,−2, α+ 1). Hence this f -triangle does not have
nonnegative dominated h-triangles.

Remark. For hereditary properties of link-preserving properties, we can use “strong
obstructions” instead of obstructions ([8, Sec. 4]): a simplicial complex is a strong
obstruction to a property P if Γ does not satisfy P but linkΓ[W ](H) satiafy P for
any W ⊆ V (Γ) and H ∈ Γ unless W = V (Γ) and H = ∅. If properties P and Q
satisfies P ⇒ Q and both are link-preserving, then hereditary-P and hereditary-Q are
equivalent if and only if all strong obstructions to P do not satisfy Q (Prop. 4.8 of [8]).
The proof of Theorem 4.10 is essentially doing this.

Corollary 4.11. ([8]) For dimensions ≤ 2, hereditary-shellability, hereditary-
sequentially Cohen-Macaulay and hereditary-partitionability coincide.

For dimensions ≥ 3, not so many things are known currently. We close this section
by the following question.

Question. Do hereditary-shellability and hereditary-SNNDH coincide in general? If
negative, for what class of simplicial complexes do these two properties coincide?
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