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Preface

Everything started from one book. I happened to buy the textbook \Lectures on Poly-

topes" [98] written by Prof. G�unter M. Ziegler, at the university bookstore about �ve years

ago. I bought it only because the �gures (especially of permutahedra and of zonotopal tilings)

interested me, but the book turned out to be a very good introduction to the world of poly-

topes, starting from fundamentals and containing many recent results. Among the many

topics, especially Lecture 8 on shellability attracted my interest. Because the shellability is a

concept which formalizes a very natural construction of objects by adding cells (= facets) one

by one, it is conceivable that triangulations and polytopal decompositions of balls and spheres

are shellable. But surprisingly, many counterexamples, that is, non-shellable decompositions

of balls and spheres are known. One of such examples, Danzer's cube, is described in the

book. I read that part repeatedly and spent much time imaging what is happening on the

ball, and then proceeded to other non-shellable balls according to the references in the book.

Still the di�erence between shellable decompositions and non-shellable decompositions was a

big mystery to me, and I have been thinking of this for years.

Soon I decided shellability should be the theme of my doctoral study. What I had in my

mind at that time was to give some characterizations of non-shellability, though this aim has

not been achieved yet. During the study, I fell to thinking that why shellings can add only

one facet in one step: what will happen if we allow a lump of facets to be added at each

step? After formulating this \generalized" de�nition of shelling, I thought that I had seen the

same formulation somewhere before. I was right. It is given in the book \Cohen-Macaulay

Rings" by Profs. Bruns and Herzog [26], named \constructibility." (This concept turned out

to go back to a 1972 paper of Hochster [49].) From this point my main interest shifted to

constructibility.

Very few works, however, have been done about constructibility. All I could �nd were a

few papers, each of which made a few statements about constructibility, so I decided to study

constructibility myself. I started with the problem whether or not there are non-constructible

triangulations of 3-balls or spheres analogous to the case of shellability.

My �rst attempt was to show that every triangulated 3-ball is constructible, which failed

as is observed in this thesis. At the same time, I also tried to check whether currently known

non-shellable 3-balls are constructible or not. First, I made a paper model of Ziegler's 3-

ball (with 10 vertices and 21 facets) and observed that it is constructible. The next targets

were Gr�unbaum's 3-ball (with 14 vertices and 29 facets) and Rudin's 3-ball (with 14 vertices

and 41 facets). But there were some problems: for Gr�unbaum's ball, the coordinates of

vertices were not known at that time, and for Rudin's, the number of facets was too large

to make a paper model. So instead of paper models, I attempted computer calculations to
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determine their constructibility by checking all the possible divisions of these two balls. It

was found that Gr�unbaum's ball was constructible, but the constructibility of Rudin's ball

remained undetermined: the amount of the possible divisions is too large even for a computer

calculation. This led me to consider the algorithmic aspect of combinatorial decompositions,

that is, decision problems. After a while, I succeeded in �nding an e�cient algorithm under

a condition that was restricted but valid for Rudin's ball. This result �nally showed that

Rudin's ball is also constructible. Later, I found a description in Provan and Billera [74]

that both of the balls are constructible. If I had known this at the beginning, Chapter 4 of

this thesis would not exist now because my original motivation of the work was to know the

constructibility of Rudin's ball, though the results contain more than that.

While dealing with the balls on computer, I happened to �nd a typographical error in

the facet list of Gr�unbaum's ball in the paper of Danaraj and Klee [32]. I sent an e-mail to

Prof. Victor Klee, and then Prof. Branco Gr�unbaum, who heard from Prof. Klee, kindly sent

me the correct list, and added a possible set of coordinates for the vertices to realize the ball

in E

3

. Prof. Ziegler also checked this typographical error for me at almost the same time.

I thank them very much, especially Prof. Gr�unbaum for his e�orts to reconstruct the list of

facets from his hand-made model more than twenty years after the birth of the ball.

On the other hand, I also managed to show Furch's knotted hole ball is not constructible.

Thus my �rst problem was solved. By that time, Prof. Ziegler had given me many useful

suggestions since I sent him an e-mail for the �rst time. I asked for his advice because he was

the author of my favorite textbook. Although I was a complete stranger to him, he kindly

sent me informative replies from time to time, which encouraged me very much.

The existence of non-constructible spheres remained to be a question even after I proved

the existence of non-constructible balls. The answer suddenly came to me in the autumn of

1998, and I wrote to Prof. Ziegler my proof of the existence of non-constructible 3-spheres.

He had a lecture in a fall school on topological combinatorics and introduced the proof there,

and brought me a more elegant way to show the statement which was suggested by Prof.

Robin Forman in discussions there. I was very impressed by the simplicity of the improved

proof. When several new ideas were added by further discussions with Prof. Ziegler, such

as improving proofs, extending the arguments to vertex decomposability and giving several

examples to show the bounds of the statements, he and I decided to write a paper [45]

together. This is my �rst joint paper, and the results are included in Chapter 3 of this thesis.

In April 1999, after Prof. Ziegler and I �nished writing our joint paper, there was a meet-

ing, \Geometric and Topological Combinatorics", in Oberwolfach, Germany. Prof. Ziegler

was one of the organizers, and it was very kind of him to include my name in the invitation

list and gave me a great opportunity to spend a whole week at Mathematishes Forschungsin-

stitut Oberwolfach. The very comfortable stay (except for the terrible thunder storm) at the
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institute and the stimulating leading-edge talks of mathematics gave me an idea to extend

the results of non-constructible spheres to solve a conjecture mentioned by Prof. Ziegler while

we were working on the joint paper. However, unfortunately (or fortunately) Prof. Ehrenborg

pointed out a crucial error in my argument. We spent a whole day to overcome the problem,

and �nally reached a new idea of a seemingly right de�nition of the bridge index for tangles

which strongly relates to the constructibility of spheres. This result did not fully solve the

original conjecture (though later we get very close to the conjecture), but it did solve Prof.

G�abor Hetyei's conjecture on shellability, which was in Prof. Ehrenborg's mind throughout

our discussion. This idea later developed into a joint paper [36] and the results are also

included in Chapter 3 of this thesis.

Chapter 5 is a very recent work, inspired by Prof. Michelle Wachs's talk in the problem

session in Oberwolfach. (This work of hers can be found in [92].) Until then, I considered

the problems only in the world of pseudomanifolds and I was convinced that the case of

two-dimensional pseudomanifolds is too simple. I never thought that there were still ques-

tions to be answered for two-dimensional simplicial complexes. In her study of \obstructions

to shellability", however, even the case of two-dimensional simplicial complexes needs very

complicated arguments, and I learned that, apart from the restricted case of pseudomanifolds

two-dimensional world is far from being simple when it comes to the general case. This made

me realize that there are much to think about two-dimensional simplicial complexes, and

noticed that I did not know whether there are two-dimensional complexes which are, for ex-

ample, Cohen-Macaulay but not constructible, constructible but not shellable, and shellable

but not vertex decomposable. I started to prove that every shellable 2-dimensional simplicial

complex is extendably shellable. About six months later, I came across a counterexample to

this problem, and counterexamples to other problems were time constructed as its variants

at the same time. Although, as Prof. Ziegler pointed out later, Anders Bj�orner studied the

same things years ago and achieved many examples (written in [14], [16] and [82]) some of

which are similar to mine, the chapter still contains newly derived results. In this study the

discussions with Fumihiko Takeuchi helped me study the problems and the seminar at Science

University of Tokyo held by Prof. Ryuichi Hirabayashi and Prof. Yoshiko Ikebe were also very

helpful for me to get the results.
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Chapter 1

Introduction

1.1 Introduction

This thesis studies combinatorics of cell complexes, especially simplicial complexes. Simpli-

cial (or cell) complexes appear everywhere in combinatorics or topology: the boundaries of

(simplicial) polytopes, triangulations of manifolds, or even in subtle ways such as the set of

chains in a partially ordered set, monotone properties of graphs. Simplicial complexes and cell

complexes play a fundamental role in topology, so it is natural that the combinatorial objects

with related cell complexes can be treated from a topological viewpoint. Such studies are

sometimes mentioned as topological combinatorics or topological methods in combinatorics. A

review of this �eld can be found in Bj�orner [15].

Though the properties of simplicial complexes are sometimes treated topologically, there

are many properties which are not topological. Here \topological" means that the properties

are determined by its topological property. Combinatorial decomposition properties, the

main subject of this thesis, are such non-topological properties. For example, shellability,

the most famous combinatorial decomposition property, is not invariant if we triangulate

a 3-dimensional ball in a di�erent way. Such properties can not be discussed only from

a topological view, but need some combinatorial arguments. For example, Bj�orner [12],

Bj�orner and Wachs [20, 21] supplied such combinatorial methods for shellability, such as the

lexicographic labeling on the face poset of cell complexes.

In spite of this strong combinatorial avor, still topological properties a�ect on combinato-

rial decompositions. The �rstly found non-shellable triangulations of spheres were of non-PL

spheres (in dimensions d � 5), the non-shellability followed from the fact that shellable trian-

gulations must be PL. And after a long search of non-shellable triangulations of 3-spheres, the

answer was given from combinatorial topology, Lickorish's construction using an embedded

knot [57]. The relation between knots and shellability was also discussed by Armentrout in his

paper [3] who showed a relation between shellability and \link property" in other paper [2].

Many interesting and important fact can be derived from the nice \harmony" of combina-
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torics and topology. Our standpoint of this thesis lies here. We try in this thesis to use results

of combinatorial topology for combinatorics of decomposition properties. (So our method is

\combinatorial topological combinatorics.") Especially our main interest is in constructibility

which is a generalized concept of shellability. Though both shellability and constructibility

are de�ned purely in combinatorial way, it seems that constructibility has more topological

avor. In some sense, constructibility can be seen as a topological relaxation of shellability,

and this �ts well to our method.

Already combinatorial methods made a good progress in topology, so it is natural that

topological methods in combinatorics also work well.

Though the enormous number of studies have been done for shellability and some for

vertex decomposability, constructibility seemed not have been treated seriously enough. It

only appeared in Stanley [83], Hochster [49], Bj�orner [15], and was mentioned shortly in

Danaraj and Klee [32], Provan and Billera [74], Bj�orner [12] to the authors knowledge. (Zee-

man [96, Ch. 3] has the same construction restricted to manifolds, and B-constructibility and

S-constructibility of Mandel [62], also mentioned in Bachem and Kern [4], is its generaliza-

tion for cellularly decomposed manifolds.) So many fundamental questions have been left

open around constructibility, for example, the existence of non-constructible triangulations of

balls or spheres were not discussed in anywhere. This thesis is the �rst serious study of con-

structibility, which is a compilation of the papers Hachimori [43], Hachimori and Ziegler [45],

Ehrenborg and Hachimori [36] and Hachimori [44] together with some new materials that

have not been published yet.

After this chapter of introduction, this thesis starts from Chapter 2 which is a review

of some preliminaries of simplicial complexes, combinatorial decomposition properties, and

some combinatorial topology. Some fundamental facts of combinatorial decompositions will

also be reviewed. Those who know well about the terminologies used in this thesis can

skip this chapter and return to recall the precise de�nitions, terminologies and fundamental

propositions when needed in the following chapters.

Chapter 3 treats the relation between combinatorial decompositions of balls and spheres

and certain knots embedded in them. In the case of 2-dimensional pseudomanifolds, con-

structibility is equivalent to the property to be homeomorphic to a ball or sphere. (This will

be discussed in Chapter 2.) But we show in this chapter that non-constructible balls and

spheres exist in three and higher dimensional cases, di�erent from the case of 2-dimensional

pseudomanifolds. Especially, the existence of non-constructible 3-sphere shown in this chapter

solves an open problem suggested in Danaraj and Klee [32]. The main result of this chapter
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is the following which implies the existence of nonconstructible triangulations of 3-balls and

spheres.

Main Theorem of Chapter 3.

� A triangulated 3-ball with a knotted spanning arc consisting of

(

at most 2 edges is not constructible,

3 edges can be shellable, but not vertex decomposable,

4 edges can be vertex decomposable.

� A triangulated 3-sphere or 3-ball with a knot consisting of

(

3 edges is not constructible,

4 or 5 edges can be shellable, but not vertex decomposable,

6 edges can be vertex decomposable.

� A triangulated 3-sphere or 3-ball with a knot K consisting of

(

at most b(K)� 1 edges is not constructible,

at most 2 � b(K)� 1 edges is not shellable,

at most 3 � b(K)� 1 edges is not vertex decomposable,

where b(K) is the bridge index of the knot K.

This provides generalizations of the previously known results: the construction of non-

shellable triangulations of 3-balls of Furch [38] or Bing [10], Lickorish's construction of non-

shellable spheres [57], Armentrout's result on cell partitionings of 3-spheres. It also gives a

solution of Hetyei's conjecture about shellability of certain cubical decompositions of spheres.

This chapter contains a joint work with G�unter M. Ziegler and that with Richard Ehrenborg.

Chapter 4 has a more combinatorial avor in the setting of the problem: decision problems.

This problem asks whether there are e�cient algorithms to decide if a given simplicial complex

has some property or not. The decision problems of combinatorial decomposition properties

are challenging problems in which almost no result is known currently. The only result

the one given by Danaraj and Klee [33] that shellability of 2-dimensional pseudomanifolds

can be decided in linear order time complexity. This chapter treats this decision problem

for constructibility. Our setting is under the condition that the simplicial complex to be

calculated is a triangulation of a 3-ball and it has very few vertices in its interior. The main

result in this chapter is the following.

Main Theorem of Chapter 4.

If a triangulated 3-ball has at most two interior vertices, then its constructibility can be decided

in O(#facets) time.

The topological properties we use in this chapter are very primitive: that the simplicial

complexes that appears in the decompositions are always homeomorphic to 3-dimensional
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balls, and some properties of triangulations of a 2-ball. But we can see there how these

primitive topological observations become powerful tools in the study.

In the last Chapter 5, we study the case of 2-dimensional simplicial complexes. For

pseudomanifolds in dimension 2, combinatorial decomposition properties | vertex decom-

posability, extendable shellability, shellability, constructibility, and Cohen-Macaulayness |

are all equivalent. This also implies that these decomposition properties are topological for

2-dimensional pseudomanifolds. But all or them are di�erent in three and higher dimensions

and they are not topological (except for Cohen-Macaulayness). Thus 2-dimensional pseudo-

manifolds have extremely nice properties which are never true in higher dimensional cases.

The problem arising here is how the situation changes if we move to the general cases: general

2-dimensional simplicial complexes. Formerly, examples which are Cohen-Macaulay but not

shellable (Stanley [87]), and shellable but not extendably shellable (Bj�orner [14]) have been

found. What we show in this chapter is the following.

Main Theorem of Chapter 5. There are 2-dimensional simplicial complexes which are

� Cohen-Macaulay but not constructible,

� constructible but not shellable,

� shellable but not vertex decomposable,

� shellable but not extendably shellable.

Each statement is given by presenting examples of the property. This shows that the gaps

between each combinatorial decomposition property exists even in 2-dimensional simplicial

complexes. Moreover, we show an example of 2-dimensional simplicial complex which is not

shellable but it has a shellable subdivision, showing that shellability is not topological for

general 2-dimensional simplicial complexes, contrary to the case of 2-dimensional pseudo-

manifolds.
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1.2 History and story of combinatorial decompositions

Among combinatorial decomposition properties, shellability is the most popular one and it

has a very long history. According to Ziegler [98], the root of shellability is in 1852, in

the work of Schl�ai [79] calculating the Euler-Poincar�e formula for d-dimensional polytopes.

But in his work, shellability of the boundary of a polytope is assumed without proof, which

turned out to be non-trivial at all. In 1924, Furch showed in his paper [38] a construction of

non-shellable triangulations of 3-balls using knots, and after that many constructions of non-

shellable triangulations were discovered by Newman [71], Rudin [78], Bing [10], Gr�unbaum

(unpublished, see [32] or [43]), and so on. These are reviewed in Ziegler's paper [99] where

his minimum non-shellable triangulation of a 3-ball using only 10 vertices and 21 facets is

presented.

These many studies on shellability of triangulations of 3-balls are related to the fa-

mous Poincar�e Conjecture stating that every simply connected compact 3-manifolds (without

boundary) are 3-spheres. One way of attacking this conjecture is to show that every \fake

cube", a manifold with boundary derived from a simply connected 3-manifold by removing

a 3-ball, is a \real cube". Shellability is one property which assures the \fake cube" to be a

\real cube," because it is known that triangulations of manifolds can be shellable only if the

manifolds are PL homeomorphic to balls (if with non-empty boundary) or spheres (if without

boundary). This line of study goes to �nd properties similar but weaker than shellability

with the same property, such as collapsibility or sequential unicoherency. These attempts to

characterize the 3-sphere from cell partitioning is described in Bing [9, 10, 11], and also seen

in Vince [89].

After many discovery of non-shellable triangulations of 3-balls, non-shellable triangu-

lations of 3-spheres were also constructed by Lickorish [57]. As for non-simplicial cases,

Vince [90] constructed a non-shellable pseudosimplicial decomposition of 3-spheres, and Ar-

mentrout [2, 3] a non-shellable cell partitioning of 3-spheres.

In spite of these negative results, Brugesser and Mani [25] �nally gave a proof to the

fact that the boundary of a polytope is always shellable, after 120 years from Schl�ai's work.

This work not only supplied a simple combinatorial proof of Euler-Poincar�e formula for high-

dimensional polytopes, but it also had a striking application on polytope theory: the solution

of Upper Bound Conjecture of polytopes. This conjecture by Mozkin [69] claims that a d-

dimensional polytope with n vertices has the maximum number of faces when it is a cyclic

polytope. After many attempts of solving this conjecture, the �nal answer was derived by

McMullen [65] which uses induction argument along shellings of the boundaries of polytopes.

After this, the shellability has become a fundamental tool for the study of polytopes

with many applications. For example, Stanley [86] showed the nonnegativity of cd-index
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of polytopes by using S-shellability, a modi�ed version of shellability, and also Billera and

Ehrenborg [7] uses shellability of polytopes to calculate cd-index of Eulerian posets. Moreover,

applications to computational geometry is becoming popular, for example Seidel [81] uses line-

shelling for the construction of convex hulls.

Though the Upper Bound Conjecture (now is a theorem) for polytopes was solved, a

generalized conjecture, Upper Bound Conjecture for triangulations of spheres remained open

because of the possible existence of non-shellable triangulations of spheres. For this, Stanley

introduced the concept of the face ring, or the Stanley-Reisner ring, on simplicial complexes

and showed that the Upper Bound Conjecture is true if the face ring of triangulations of

spheres are Cohen-Macaulay [83]. One property which assures Cohen-Macaulayness was con-

structibility, a combinatorial decomposition property generalized from shellability, introduced

by Hochster [49]. At that time it was not known whether or not there are non-constructible

triangulations of spheres, but later Edwards [35] showed the Double-Suspension Theorem,

the double-suspension of certain homology 3-sphere is homeomorphic to the 5-dimensional

sphere, which leads to the existence of non-PL spheres in dimensions d � 5, (later this

double suspension theorem is generalized to any homology 3-spheres by Cannon [27]) which

assures the existence of non-constructible (thus non-shellable) triangulations of spheres. But

independently from this pessimistic event, Reisner [75] showed a characterization of Cohen-

Macaulayness which implies that all triangulations of spheres are Cohen-Macaulay, Stanley's

method for Upper Bound Conjecture for spheres completed a�rmatively [84].

Extendable shellability, introduced by Danaraj and Klee [32], is related to the decision

problem of shellability. Extendably shellable means that every partial shelling can be ex-

tended to a complete shelling, thus a shelling of an extendably shellable complex can be

constructed easily. Thus if one use the shelling property in a design of an algorithm for some

computation, it is desired to be not only shellable but extendably shellable. In spite of this

need of extendability, very few is known about extendable shellability. Even it is not known

whether all skeletons of a simplex are extendably shellable or not. What is currently known is

that every triangulation of a 2-ball or a 2-sphere is extendably shellable as shown in Danaraj

and Klee [32] (thus the boundary of a 3-polytope is always extendably shellable), but the

boundaries of \almost all" 4-polytopes are not extendably shellable as shown by Ziegler [99].

Vertex decomposability, a stronger concept than shellability, was introduced by Provan

and Billera [74] (also in Billera and Provan [8]) in relation with the Hirsch Conjecture. The

Hirsch Conjecture claims that the diameter of the graph of a d-polytope with n facets is at

most n� d. The property of vertex decomposability is that if the dual simplicial complex of
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the boundary of a simple d-polytope is vertex decomposable, then the polytope satis�es the

Hirsch Conjecture. But it turned out that not every polytopes has a vertex decomposable

boundary, see Klee and Kleinschmidt [53].

In closing this introduction, we show the conceivably most oldest example of non-shellable

cell decomposition of a 3-ball. (It is very unfortunate that it is not a polytopal decomposition.)

This is a puzzle called \Burr puzzle" described in Martin Gardner's Scienti�c American

column, \Mathematical Games" in Jan. 1978, which can be found in a book \Penrose Tiles

to Trapdoor Ciphers" [39]. This puzzle is made of six pieces of the right �gure which are

assembled into the left �gure. This is an old kind of puzzle which challenges people to

disassemble to pieces or to assemble into the original shape. This object has an extremely

interesting property: the whole is homeomorphic to a 3-ball, but the removal of every one

piece produces an object which is not homeomorphic to a 3-ball. As is seen later, shellable cell

partitionings of a manifold with a non-empty boundary should be homeomorphic to a ball in

every step, which implies that this cell partitioning is not shellable. Though this example is not

belonging to the class of cell complexes we treat in this thesis (i.e., polytopal complexes), but

at least it gives us an insight how non-shellable cell decompositions are possible. For example,

the reasoning of non-shellability of Danzer's cube described in Ziegler's textbook [98, p.238]

(or in Ziegler [99] with a more beautiful picture) is almost the same in the last step.

According to Gardner, this puzzle is published at least in 1857 in a puzzle book \The

Magician's Own Book" written anonymously, and its origin is much older. Really many

people have played with this kind of puzzles without knowing they are examples of non-

shellable balls...
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Chapter 2

Preliminaries

2.1 Simplicial, polytopal and cell complexes

Basic de�nitions

The main objects treated in this thesis are simplicial complexes.

De�nition 2.1. A simplicial complex C is a set of simplices in some Euclidean space such

that

(i) if � 2 C and � is a face of �, then � 2 C, and

(ii) if �; � 2 C, then � \ � is a face of both � and � .

Especially, the empty set ; is always contained in a simplicial complex if the simplicial

complex is not empty.

The members of a simplicial complex is called faces, or k-faces if the dimension is k. 0-

faces are vertices, 1-faces are edges, and the maximal faces in inclusion relation are facets. A

k-skeleton of a simplicial complex is a subcomplex made of all the faces of the complex whose

dimension is at most k. The dimension of a simplicial complex is the maximum dimension of

its facets. The following is an example of a simplicial complex of dimension 2 embedded in

E

2

.

There is another way to de�ne simplicial complexes in a viewpoint of set families: a set

family is a simplicial complex if it is closed under taking subsets. Here a set of vertices in

one face (in De�nition 2.1) corresponds to a set in a family. Simplicial complexes de�ned in

this way are especially called abstract simplicial complexes, but both de�nitions are in fact
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equivalent, because it is known that every abstract simplicial complex of dimension d (i.e.,

the size of a set in the family is at most d+1) can be realized in the sense of De�nition 2.1 in

(2d+1)-dimensional Euclidean space. This equivalence allows us to use non-straight simplices

as in the following �gure instead of real simplices in De�nition 2.1.

Later in Chapter 3, some examples of 3-dimensional simplicial complexes (triangulations of

3-spheres) are not embedded in E

3

, but we need not worry about it because those examples

are surely embeddable in E

7

.

A simplicial complex is pure if all its facets have the same dimension d. A pure simplicial

complex is strongly connected if any two facets F and G have a sequence F = F

1

; F

2

; : : : ; F

k

=

G of facets such that F

i

and F

i+1

has a common (d � 1)-face, for each 1 � i � k � 1. A

pseudomanifold is a pure simplicial complex which is strongly connected and every (d�1)-face

is contained in at most two facets. For a set A of simplices, the closure A of A is the minimum

simplicial complex which contains A, that is, A is the set of all the faces of simplices of A.

An example of a simplicial complex is a triangulation of a (compact connected) manifold

(with boundary). A triangulation of a manifold is pure, strongly connected, and in fact is

a pseudomanifold. But a pseudomanifold is not always a triangulation of a manifold, as the

following example shows, where the neighbourhood of v is not homeomorphic to a ball.

v

The boundary complex @C of a pure d-dimensional simplicial complex C is the closure

of (d � 1)-dimensional faces which belongs to only one facet. Usually this term is used for

pseudomanifold cases, but we also use for general cases. In the triangulation of a manifold,

the boundary complex corresponds to the boundary of the manifold. The interior

�

C

of C is

C n @C.

In Chapters 3 and 4, our main interest is in the case of pseudomanifolds. In fact, as

will be shown in the next section, pseudomanifolds with certain combinatorial decomposition

10



properties become triangulations of balls or spheres, so what we really discuss in the chapters

is the case of triangulations of balls or spheres. This emphasis on these special cases is by

two reasons. The �rst reason is historical: the study of triangulations of manifolds has a

long history and many studies have been done, and the study of combinatorial decomposition

properties (shellability or constructibility, introduced in the next section) of triangulations

of balls or spheres had an importance in relation with the Poincar�e Conjecture. Also one

source of problems comes from the study of polytopes in combinatorics, which is a special

case of triangulations (or polytopal decompositions) of spheres. The second reason is that the

topology of pseudomanifolds (balls or spheres) is known well. In combinatorial decomposition

properties such as shellability or constructibility, the topology will be preserved recursively

in the decomposition, and this sometimes assures a good property. The di�erence between

the case of pseudomanifolds and that of general simplicial complexes will be presented in

Chapter 5.

A polytopal (polyhedral) complex is a set C of polytopes satisfying

� if P 2 C and Q is a face of P , then Q 2 C, and

� if P;Q 2 C, then P \Q is a face of both P and Q.

For the de�nitions and properties of polytopes, see Ziegler [98]. Here, a simplicial complex

is a special case of polytopal complexes, the case when every polytope is a simplex, so this

de�nition of polytopal complexes is a generalization of De�nition 2.1 of simplicial complexes.

If every polytope in a polytopal complex is combinatorially equivalent to a cube, then the

complex is a cubical complex.

An example of a polytopal complex is the boundary complex of a polytope, the set of the

faces of the polytope except for the polytope itself. The boundary complex of a simplicial

polytope is a simplicial complex and that of a cubical polytope is a cubical complex.

The most general de�nition in this line seems to be regular CW complexes, see Bj�orner [13,

15]. A (�nite) CW complex H is a Hausdor� topological space X

H

with a certain kind of

cellular decomposition K =

S

d

i=0

K

i

such that (i) K

0

is a discrete space of �nite points,

each point is a 0-cell, and (ii) K

n

is obtained by attaching a �nite disjoint family of n-balls

(n-cells) to K

n�1

such that each n-cell D

n

has a characteristic map �

i

: D

n

! K

n

such that

its restriction to the boundary of D

n

is a continuous map into K

n�1

and the restriction to the

interior of D

n

is a homeomorphism. (The condition of weak topology for CW complexes is not

needed here because we are considering a �nite case.) A regular CW complex is a CW complex

such that each cell has a characteristic map which is a homeomorphism. For de�nitions and

further discussions about CW complexes, the reader is recommended to consult textbooks of
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topology such as Bredon [24], Massey [63], etc. The following �gure shows a non-regular CW

complex and a regular CW complex.

regular CW complex

non-regular CW complex

This concept of regular CW complexes is used in many places as a combinatorial object

corresponding to polytopal complexes, for example in oriented matroid theory (Bj�orner et.

al. [18]), but in this thesis we do not need this because our main interest is in simplicial

complexes. But polytopal cases will be discussed sometimes.

The set of faces of a simplicial complex C forms a poset (partially ordered set) ordered

by inclusion relation (of the closure), called a face poset of C. This face poset has the empty

set as its bottom element

^

0 and the arti�cial element

^

1 (regarded as the simplicial complex

itself) as the top element. If two simplicial complexes have an isomorphic face poset, then

they are combinatorially equivalent.

For a simplicial complex C, the star star

C

� of a face � 2 C is the simplicial complex

that contains all faces of facets of C that contain �, and the link link

C

� is the subcomplex

of star

C

� that do not intersect with �.

x

x

star

C

x

link

C

x

In the polytopal case, there are two ways to de�ne the link. One way is (i) just the same

as simplicial case. This de�nition is used in Ziegler [98]. The other way is (ii) to de�ne as

a polytopal complex which is combinatorially equivalent to the \face �gure" of � in C, i.e.,

a polytopal complex whose face poset is isomorphic to the subposet of the face poset of C

induced by the elements � satisfying � � � , that is, the upper ideal of �. In this thesis we

choose the latter de�nition.

x

x

link

C

x of (i)

link

C

x of (ii)

! our de�nition

These two de�nitions di�ers in general but they coincide in the case of simplicial complexes.
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Some operations

For two simplices � and � not providing common vertices, the join of � and � is a simplex

with vertices of � and � . The join v �C of a vertex v and a simplicial complex C is the set of

simplices fv � � : � 2 Cg (not a simplicial complex), and the join of two simplicial complexes

C and D is the simplicial complex C � D = f� � � : � 2 C and � 2 Dg. A pyramid over

a simplicial complex C is v � C, a join of C and a 0-ball, and a suspension of a simplicial

complex D is fv; wg �D, a join of D and a 0-sphere.

The suspension of D is denoted by �D.

pyramid

suspension

In this �gure, the left �gure is a pyramid over a square (this makes a solid pyramid) and

the right �gure is a suspension of a circle made of 4 edges (this makes the boundary of an

octahedron).

(In usual treatment in PL topology, the join operation is only allowed in the case the two

simplices are joinable, i.e., each vertices of the involved simplices is the vertex of their convex

hull and no intersection occurred by this operation. But in our context, we are not interested

in a �xed embedding and only require just the existence of a possible embedding. In other

words, our main interest is in the combinatorial structure which can be read from abstract

simplicial complexes. So in our situation, we can perform the join operation in an abstract

setting and then embed it in some Euclidean space. This is why we omitted the requirement

of joinability.)

If a simplicial complex C

0

has an embedding in E

n

, in which other simplicial complex C

is already embedded, such that every face of C is a union of some faces of C

0

, then C

0

is a

subdivision of C.

C

0

C

A stellar subdivision stellar

C

� is a special kind of subdivisions, stellar

C

� = (C n star

C

�) [

(p � link

C

�), where p is a new vertex. This stellar subdivision can be realized by taking a
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relative interior point p in the face � and then construct a minimum subdivision of C which

contain p as a vertex.

(For a polytopal complex, we should use the de�nition of links in the way of (i) in p. 12.)

C

�

stellar

C

�

stellar

C

�

�

p

p

A barycentric subdivision sd(C) is a subdivision of C made by repeated stellar subdivisions:

�rst stellarly subdivide C by all the d-faces of C (where d is dimC), then by all the (d� 1)-

faces, � � � , and lastly by the 1-faces. (The resulting subdivision is unique.) This also can be

de�ned via face posets: in the face poset of C minus the top element C itself and the bottom

element ;, we associate a simplex v

�

i

1

v

�

i

2

� � � v

�

i

k

to each chain �

i

1

� �

i

2

� � � � � �

i

k

. Then

we get a simplicial complex sd(C) which is the same one as de�ned above.

C sd(C)

The number of faces: f-vectors and h-vectors

For a d-dimensional simplicial (polytopal) complex C, we denote the number of i-dimensional

faces of C by f

i

(C), and f(C) = (f

�1

(C); f

0

(C); f

1

(C); : : : ; f

d

(C)) is called the f-vector of

C. We associate a generating polynomial, f -polynomial, to the f -vector,

f(C; x) = f

�1

(C)x

d+1

+ f

0

(C)x

d

+ � � �+ f

d�1

(C)x+ f

d

(C):

From this polynomial another invariant, h-vector is de�ned to be the coe�cients of f(C; x�1),

that is,

f(C; x� 1) = h

0

(C)x

d+1

+ h

1

(C)x

d

+ � � �+ h

d

(C)x+ h

d+1

(C):

(Be careful that f -vector is indexed by f�1; 0; : : : ; dg but h-vector is indexed by f0; 1; : : : ; d+

1g.) The polynomial f(C; x� 1) is called an h-polynomial and denoted by h(C; x).
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These two vectors are related by a linear transform and the knowledge of one of the vectors

determines uniquely the other. The explicit formula to derive h-vector from f -vector is as

follows:

h

k

(C) =

k

X

i=0

(�1)

k�i

�

d+ 1� i

d+ 1� k

�

f

i�1

(C):

Especially,

h

0

(C) = 1;

h

1

(C) = f

0

(C)� (d+ 1);

h

d+1

(C) = f

d

(C)� f

d�1

(C) + � � �+ (�1)

d

f

0

(C) + (�1)

d+1

f

�1

(C)

= (�1)

d

~�(C);

where ~�(C) is the reduced Euler characteristics,

~�(C) = �f

�1

(C) + f

0

(C)� � � �+ (�1)

d

f

d

(C):

In spite of the equivalence of f -vectors and h-vectors, there are some cases where using

h-vectors are preferred than f -vectors. For example, the boundary complexes of polytopes

and also triangulated spheres satis�es a set of equations called Dehn-Sommerville equations

(for example Bayer and Billera [5], Ziegler [98]):

f

k�1

=

d+1

X

i=k

(�1)

d+1�i

�

i

k

�

f

i�1

; (0 � k � b

d+ 1

2

c)

but these equations written in term of h-vectors are simply:

h

k

= h

d�k+1

: (0 � k � b

d+ 1

2

c)

Moreover, h-vectors have a combinatorial and algebraic interpretation which we will review

in Section 2.3.4.

As noted above, the top element of h-vector, h

d+1

(C), equals to (�1)

d

~�(C). This means

that h

d+1

(C) is a topological invariant because the reduced Euler characteristics has the

following formula:

~�(C) =

d

X

i=�1

(�1)

i

dim

~

H

i

(C);

where

~

H

i

's are the reduced homology groups. A topological space is contractible if it has

the homotopy type of one point. We also say that C is contractible if jCj (=

S

�2C

�, the

underlying space of C) is contractible. Because the reduced homology groups are invariant

by homotopy, contractible space has

~

H

i

(C) = 0 for all i. Thus we have h

d+1

(C) = 0 if C is

contractible. (This fact will be used in Chapter 5.)
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2.2 Balls, spheres, and manifolds

This section provides basic preliminaries on topology, especially on PL (piecewise linear)

topology. We just present here some properties which we need in this thesis without proof.

For their proofs and further discussions, we recommend Zeeman [96], Hudson [51] or Bing [11].

For a simplicial (polytopal) complex C, the underlying space (or geometric realization)

jCj is the union

S

�2C

� of all the simplices belonging to C. If the underlying space is home-

omorphic to a manifold M (with boundary), then the simplicial complex is a triangulation

of M . Throughout this thesis, a d-ball or a d-sphere is a short for a triangulation of the

d-dimensional ball or d-dimensional sphere, respectively. A triangulation of a manifold is a

pseudomanifold with an additional condition that the neighbourhood of every point in the

underlying space is homeomorphic to a full-ball or a half-ball.

In the case of a polytopal complex, a polytopal complex whose underlying space is home-

omorphic to a manifold M is a polytopal decomposition of M . A polytopal ball (sphere) is

short for a polytopal decomposition of a ball (sphere).

A d-dimensional ball (as a topological space, not a triangulation) is PL if there is a

piecewise linear homeomorphism between the ball and a d-dimensional simplex, and a d-

dimensional sphere is PL if there is a piecewise linear homeomorphism between the sphere

and the boundary of a d-dimensional simplex. We say a PL-d-ball (or simply a PL-ball),

and a PL-d-sphere (a PL-sphere) for short. A triangulated manifold is called a combinatorial

manifold if the link of each vertex is a PL-ball or a PL-sphere.

The following propositions are fundamental in PL topology.

Proposition 2.2. [96, Lemma 9]

A triangulation of a ball or a sphere is PL if and only if the link of each vertex is a PL-ball

or a PL-sphere, i.e., if it is combinatorial.

Proposition 2.3. [96, Corollary to Theorem 2]

If two PL-d-balls meet by a PL-(d � 1)-ball which lies in their boundaries, then the union is

again a PL-d-ball.

Proposition 2.4. [96, Follows from Theorem 2]

If two PL-d-balls meet by their whole boundaries, then their union is a PL-d-sphere.

Proposition 2.5. [96, Theorem 3]

If we remove a PL-d-ball from a PL-d-sphere, the closure of the rest is a PL-d-ball.
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Proposition 2.6. [96, Corollary to Lemma 8]

The join of a PL-p-ball and a PL-q-ball is a PL-(p+ q+1)-ball, and the join of a PL-p-sphere

and a PL-q-sphere is a PL-(p + q + 1)-sphere. Especially, a pyramid over a PL-d-ball is a

PL-(d+ 1)-ball, and a suspension of a PL-d-sphere is a PL-(d+ 1)-sphere.

Further, it is known that all 2- and 3-balls and spheres are PL, but there are non-PL

5-spheres. (It is not known whether there are non-PL 4-spheres or not.)
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2.3 Combinatorial decomposition properties

2.3.1 Shellability

De�nition 2.7. An ordering of the facets F

1

; F

2

; : : : ; F

t

of a d-dimensional simplicial complex

is a shelling if (F

1

[ � � � [ F

i�1

) \ F

i

is a pure (d � 1)-dimensional simplicial complex, for

2 � i � t. A simplicial complex is shellable if it admits a shelling. Moreover, if every partial

shelling (i.e., an ordering of a subset of facets satisfying the condition) extends to a complete

shelling, it is called extendably shellable.

11
3

1 4

3
1

2 2 2

For polytopal complexes, there are several types of de�nitions of shellability all of which

generalize the above de�nition, but the following is now the standard de�nition because it

has a very nice recursion.

De�nition 2.8. (Bj�orner and Wachs [21] Bj�orner [13], etc.)

An ordering of the facets F

1

; F

2

; : : : ; F

t

of a d-dimensional polytopal complex is a shelling if

(F

1

[ � � � [F

i�1

)\F

i

is (d� 1)-dimensional and has a shelling which extends to a shelling of

the boundary of F

i

.

1

2

6

7

5

4

3

F

i

There are some other versions for example: (i) only require the intersection is shellable

(Brugesser-Mani [25]), (ii) even only require that it is a ball or sphere (Danaraj-Klee [31],

\weak shellability"), (iii) require that F

1

[ F

2

[ : : : [ F

i

is a ball for every step (Ewald [37])

except for the last step, and (iv) a custom-tailored version for the application to cd-index,

S-shellability (\S" for \spherical") of Stanley [86]. It is known that these are all equivalent

in simplicial cases. (But (iii) requires that the realization is a ball or sphere, and (iv) requires

to be a sphere.) Another essentially same variation is by indexing the facets in the reverse

way: this seems to be familiar among topologists, for example Bing [10].

Although the above de�nitions of shellability requires that shellable complexes should be

pure (easily shown), there is a non-pure version of de�nition by Bj�orner and Wachs [22, 23].

This non-pure version of shellability, which includes the pure case as a special case, is now

assumed to be the standard de�nition, but we will not use it in this thesis.
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One property of shellability is that it is inherited by links:

Proposition 2.9. (Bj�orner[12])

Every link of a shellable simplicial (polytopal) complex is shellable.

(Be careful that this may no longer be true if we use the �rst version of the de�nition of the

link in the polytopal case; this is why we chose the second way of de�nition in p. 12. See

Exercise 8.4 of Ziegler [98].)

Proof. A shelling of the complex induces a shelling of each link.

Another way to show this is by using the results of Bj�orner and Wachs [21]: a polytopal

complex is shellable if and only if its face poset is CL-shellable (\CL" = \chainwise lexico-

graphic"), and every interval of a CL-shellable poset is CL-shellable.

By this proposition, we can easily check that the following �gure is not shellable because

link

C

x is not shellable. (1-dimensional complex is shellable if and only if it is connected.)

x

C

link

C

x

The most interesting and mysterious fact around shellability seems to be the existence

of non-shellable triangulations of 3-balls and 3-spheres. This is a surprising fact compared

to the fact that every shellable pseudomanifolds are homeomorphic to balls or spheres (this

will be shown in Section 2.3.2 in a stronger form), and that the converse for 2-dimensional

pseudomanifolds is also true (see Section 2.5). Moreover, the following important theorem is

shown by Brugesser and Mani [25], which has many applications in combinatorics of polytopes

such as McMullen's Upper Bound Theorem of polytopes [65].

Theorem 2.10. (Brugesser-Mani [25])

Every boundary complex of a polytope is shellable.

The proof is done by using the so-called \line shelling".

A number of non-shellable triangulations of 3-balls are reviewed in Ziegler [99]. Currently

known construction of non-shellable balls seems to be only of two types: one uses knots, and

the other constructs directly a situation that a removal of every one facet corrupt the ball-

ness. Such triangulations of balls that no facet can be removed without corrupting ball-ness

are especially called strongly non-shellable [99].
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The former construction, a construction using knots is the oldest one: Furch's knotted

hole ball. This one will be treated in Section 3.1 of Chapter 3. The rest can be grouped

in the latter construction, though �nding some nice reasoning of their non-shellability seems

an interesting open problem. An indirect but good-for-understanding example is the Danzer

cube described in Ziegler [98, 99], a triangulation of a cube involving a special link made of 12

edges. The small examples of triangulated 3-balls, Rudin [78], Gr�unbaum (unpublished, see

Danaraj and Klee [32] and Hachimori [43].) and Ziegler [99], exhibit a concrete example of

triangulation with the property that no facet can be removed without losing ball-ness. (Thus

these three examples are strongly non-shellable.) The list of the facets of these triangulations

are the following:

Rudin's 3-ball (with 14 vertices and 41 facets):

3 4 7 11 4 5 8 12 5 6 9 13 6 3 10 14 3 4 7 12 4 5 8 13

5 6 9 14 6 3 10 11 4 7 11 12 5 8 12 13 6 9 13 14 3 10 14 11

4 8 11 12 5 9 12 13 6 10 13 14 3 7 14 11 11 12 13 14 7 11 12 13

8 12 13 14 9 13 14 11 10 14 11 12 3 7 12 13 4 8 13 14 5 9 14 11

6 10 11 12 3 9 12 13 4 10 13 14 5 7 14 11 6 8 11 12 1 3 9 13

2 4 10 14 1 5 7 11 2 6 8 12 1 3 7 13 2 4 8 14 1 5 9 11

2 6 10 12 1 7 11 13 2 8 12 14 1 9 13 11 2 10 14 12

Gr�unbaum's 3-ball (with 14 vertices and 29 facets):

1 2 3 7 1 2 4 8 1 2 7 8 1 3 5 7 1 4 8 10 1 5 6 13

1 5 7 13 1 6 11 13 1 7 8 10 1 7 11 13 2 3 7 9 2 4 6 8

2 5 6 14 2 5 12 14 2 6 8 14 2 7 8 9 2 8 12 14 3 5 7 9

4 6 8 10 5 6 13 14 5 7 9 13 5 12 13 14 6 8 10 14 6 11 13 14

7 8 9 13 7 8 10 14 7 8 13 14 7 11 13 14 8 12 13 14

Ziegler's 3-ball (with 10 vertices and 21 facets):

1 2 3 4 1 2 5 6 2 3 6 7 3 4 7 8 4 1 8 5 1 5 6 9

1 6 2 9 1 2 4 9 1 4 8 9 1 8 5 9 2 5 6 10 2 6 7 10

2 7 3 10 2 3 1 10 2 1 5 10 3 6 7 8 3 2 4 8 3 2 6 8

4 5 7 8 4 1 3 7 4 1 5 7

(The list of Rudin's and Gr�unbaum's 3-balls are taken from Danaraj-Klee [32], where the

typographical error of the 9th facet in the latter is suitably corrected, see [43]. The list of

Ziegler's 3-ball is taken from his own paper [99].)

All of these three examples have a geometric realization in E

3

, with all vertices on their

boundaries. Rudin's ball even has a convex realization, while the rest two seems to have only

non-convex realizations. Another example of non-shellable triangulation of a 3-ball, Bing's
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house with two rooms which will be described in Section 4.4, also has the same property: all

the vertices on its boundary and the removal of any one facet corrupting its ball-ness.

The only known way of the construction of non-shellable triangulations of 3-spheres was

shown by Lickorish [57]. (If we do not require to be a triangulation, pseudosimplicial de-

composition is shown in Vince [90] and cell partitionings in Armentrout [2, 3].) This uses an

embedded knot and its non-shellability is shown by using the idea of collapsing and counting

the number of generators needed to represent the fundamental group of the knot complement.

This non-shellable sphere will be treated in Section 3.3 with a proof of its non-shellability by

a di�erent way via constructibility argument.

About extendable shellability, what we remark here is the following.

� All the triangulation of 2-balls and 2-spheres are extendably shellable. (Shown later in

Section 2.5.) But not all shellable 2-dimensional simplicial complexes are extendably

shellable. (See Section 5.3.)

� There are simplicial 4-polytopes whose boundary complexes are not extendably

shellable. (Shown in Ziegler [99]. This implies that extendable shellability is strictly

stronger than shellability.)
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2.3.2 Constructibility

De�nition 2.11. A pure d-dimensional simplicial complex C is constructible if

(i) C is a simplex, or

(ii) there are two d-dimensional constructible simplicial complexes C

1

and C

2

such that

C

1

[C

2

= C and that C

1

\C

2

is a (d� 1)-dimensional constructible simplicial complex.

C

1

C

2

C

1

\ C

2

C

This concept of constructibility was �rst formulated by Hochster [49], and appears in

Stanley [83], Bj�orner [15], etc. The relation between shellability and constructibility can be

seen from the following reformulation of shellability of simplicial complexes.

De�nition 2.12. (Reformulation of De�nition 2.7.)

A pure d-dimensional simplicial complex C is shellable if

(i) C is a simplex, or

(ii) there is a d-dimensional shellable simplicial complexes C

1

and a d-simplex C

2

such that

C

1

[ C

2

= C and that C

1

\ C

2

is a (d� 1)-dimensional shellable simplicial complex.

The equivalence of De�nitions 2.7 and 2.12 is easy to see. From this, one can observe that

constructibility is a relaxation of shellability, that is, if we restrict C

2

to be a simplex in the

De�nition 2.11 of constructibility, we have De�nition 2.12 of shellability.

The version for polytopal complexes is as follows.

De�nition 2.13. A pure d-dimensional polytopal complex C is constructible if

(i) C is a polytope, or

(ii) there are two d-dimensional constructible polytopal complexes C

1

and C

2

such that

C

1

[C

2

= C and that C

1

\C

2

is a (d� 1)-dimensional constructible polytopal complex.

This polytopal version is also a relaxation of shellability for polytopal cases. Also this

de�nition includes the simplicial version of the de�nition above. If we use this de�nition for

regular CW complexes, we should additionally require that the boundary complex of each
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cell is constructible, see Mandel [62] or Hachimori [42]. (For polytopal case, we do not need

this treatment because the boundary complex of a polytopes is constructible.)

Constructibility is inherited by links, as same as the case of shellability.

Proposition 2.14. (Bj�orner [12, 15])

Every link of a constructible polytopal complex is constructible.

Proof. Let C be a constructible polytopal complex and � a face of C. We use induction on

the number of facets of C. The case of a simplex C is trivial, so we write C as a union of two

constructible complexes C

1

and C

2

. If � is contained in only one of C

1

and C

2

, say in C

1

,

then link

C

� = link

C

1

� is constructible by induction. If � is contained in C

1

\ C

2

, then

(i) (link

C

�) \ C

1

= link

C

1

� =: L

1

,

(ii) (link

C

�) \ C

2

= link

C

2

� =: L

2

,

(iii) L

1

\ L

2

= (link

C

1

�) \ (link

C

2

�) = link

C

1

\C

2

� , and

(iv) L

1

[ L

2

= link

C

� .

These observations imply by induction that link

C

� is constructible.

Again we remark here that this proposition for polytopal (non-simplicial) case does not hold

if we de�ne links by the faces of star

C

� not containing � (the way of de�nition (i) in p. 12),

as remarked after Proposition 2.9.

We also have the following property of constructible complexes. The proof is omitted

because it is obvious.

Proposition 2.15. Constructible polytopal complexes are strongly connected.

For the case of pseudomanifolds, constructibility assures a stronger property for the topol-

ogy of the underlying space.

Proposition 2.16. (Zeeman [96], Bj�orner [15])

A d-dimensional constructible simplicial (or polytopal) complex in which any (d � 1)-face is

contained in at most two facets is a PL-d-ball or a PL-d-sphere.

Proof. This is by induction on the size of facets and on the dimension. First, a simplex is a

PL-ball by de�nition, and this makes the induction base.

Let C be a constructible complex with the property that each (d � 1)-face is contained

at most two facets, and assume that C is not a simplex. Then there are two constructible

complexes C

1

and C

2

satisfying the condition (ii) of De�nition 2.13. Here both C

1

and C

2
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satisfy the condition that each (d�1)-face is contained in at most two facets, thus by induction,

both are PL-d-balls or PL-d-spheres. Moreover, C

1

\ C

2

is contained in the boundaries of

both balls because of the requirement that C also satis�es that each (d� 1)-face is contained

at most two facets. (This means that C

1

and C

2

were PL-d-balls, not spheres.) Because

the boundary of a d-ball is a (d � 1) sphere, C

1

\ C

2

also satis�es that each (d � 2)-face is

contained at most two facets. Also by induction hypothesis, C

1

\ C

2

is a PL-(d � 1)-ball or

PL-(d � 1)-sphere. Now the statement follows from Propositions 2.3 and 2.4, according to

whether C

1

\ C

2

is a ball or a sphere.

Because shellable complexes are constructible, we have the following corollary.

Corollary 2.17. A shellable pseudomanifold is a PL-ball or a PL-sphere.
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2.3.3 Vertex decomposability

A deletion dl

C

� of a face � of a simplicial complex C is the simplicial complex f� : � 2

C and � 6� �g.

De�nition 2.18. A pure d-dimensional simplicial complex C is vertex decomposable if

(i) C is a simplex (including the case that C is f;g), or

(ii) there is a vertex x such that link

C

x and dl

C

x are vertex decomposable simplicial

complexes.

x

link

C

x

dl

C

x

The vertex x in the de�nition is called a shedding vertex.

This de�nition is introduced by Provan and Billera [74] in relation with Hirsch conjecture.

(See also Billera and Provan [8].)

There is also more general concept, k-decomposability.

De�nition 2.19. A pure d-dimensional simplicial complex C is k-decomposable if

(i) C is a simplex, or

(ii) there is a face � with dim� � k such that link

C

� and dl

C

x are k-decomposable

simplicial complexes.

Naturally the following implications hold:

vertex decomposable = 0-decomposable ) 1-decomposable ) � � � ) d-decomposable.

Moreover, Provan and Billera [74] shows that d-decomposability is equivalent to shellability.

(The fact that vertex decomposability implies shellability can be shown directly using induc-

tion on the number of facets and the dimension.)

The important property of vertex decomposability is the following.

Theorem 2.20. (Provan-Billera [74])

If C is a d-dimensional vertex decomposable simplicial complex, then

diamC � f

k

(C)�

�

d+ 1

k + 1

�

; for 0 � k � d.
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Here, diamC is the diameter of the graph in which vertices are facets of C and two vertices

are connected by an edge if the corresponding two facets have a common (d� 1)-face. Con-

sequently, every vertex decomposable simplicial complex satis�es the Hirsch conjecture (in a

dual sense), that is, diamC is at most #ffacetsg � (d+ 1).

(The Hirsch conjecture states that the diameter of the edge graph of a polytope P (a graph

made of edges and vertices of the polytope) is at most #ffacets of Pg�dimP , and the vertex

decomposable simplicial complexes above corresponds to the boundary complex of the dual

(or the polar) of the polytope.)

The Hirsch conjecture for polytopes is still open, but there are simplicial spheres which

fails to satisfy the conjecture, 27-sphere with 56 vertices and more than 8000 simplices by

Walkup [93], and also such example of a 3-sphere is given in Mani and Walkup [66]. There is

a non-vertex decomposable 4-polytope made by Lockeberg [60] but still satisfying the Hirsch

conjecture, see Klee and Kleinschmidt [53].

Remark. The facet list of Lockeberg's 4-polytope described in the paper of Klee and Klein-

schmidt [53] seems to contain a typographical error. The facet \aejk" (the 43rd facet) should

be \aehk" in order to make this simplicial complex to be a sphere.
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2.3.4 Other properties

Cohen-Macaulayness

Cohen-Macaulayness is one of the most famous properties of simplicial complexes and has been

studied by many researchers. To be precise, this is not a kind of combinatorial decomposition

properties, but we introduce this concept as one of combinatorial decomposition properties

because this is in a sense a topological relaxation of combinatorial decomposition properties

and we can not avoid this in the study of this �eld.

Usually Cohen-Macaulayness is de�ned in terms of face rings (or Stanley-Reisner rings)

that a simplicial complex is Cohen-Macaulay if its face ring is Cohen-Macaulay, but we

de�ne here in terms of reduced homology groups of links which is the characterization of

Cohen-Macaulayness by Reisner [75]. For the original algebraic de�nition, see for example

Stanley [86] or Hibi [48].

De�nition 2.21. A simplicial complex is Cohen-Macaulay if

~

H

i

(link

C

�) = 0 except i =

dim link

C

� for any face � of C, where

~

H

i

is the reduced homology group over a ring R.

Remark. This Cohen-Macaulayness depends on the choice of R. In this thesis, we assume

that the ring R is always Z. It is known that Cohen-Macaulayness over Z is stronger than to

be Cohen-Macaulay over any �eld, see Bj�orner [15, p. 1855].

The following property is known.

Proposition 2.22. (Munkres [70, Corollary 3.4])

A simplicial complex C is Cohen-Macaulay if and only if jCj satis�es that

~

H

i

(jCj) = 0 =

H

i

(jCj; jCj np) for all p 2 jCj and i < dimC, where H

i

denotes the singular relative homology

group and

~

H

i

denotes the singular reduced homology group. Thus Cohen-Macaulayness is

topological, i.e., if the underlying spaces of C and C

0

are homeomorphic and C is Cohen-

Macaulay, then C

0

is also Cohen-Macaulay.

Though the proof in Munkres [70] is written in terms of cohomology over a �eld, the same

argument can be used for homology over Z. The following proof is the same as the original

except for replacing cohomology by homology.

Proof. If link

C

� 6= ;, then

H

j

(jCj; jCj n p) ' H

j

(jstar

C

�j; jstar

C

�j n p)

' H

j

(jstar

C

�j; j@� � link

C

�j)

'

~

H

j�1

(j@� � link

C

�j) � � � (�)

'

~

H

j�dim��1

(jlink

C

�j);
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and if link

C

� = ;, then

H

j

(jCj; jCj n p) ' H

j

(j�j; j�j n p)

' H

j

(j�j; j@�j)

'

~

H

j�1

(j@�j) � � � (�)

'

(

Z if j = dim�

0 if j 6= dim�

'

~

H

j�dim��1

(;):

Here, both (�) are implied by the long exact sequence

� � � ! H

i+1

(X;A) !

~

H

i

(A) !

~

H

i

(X)

! H

i

(X;A) !

~

H

i�1

(A) !

~

H

i�1

(X)

! � � �

! H

0

(X;A) !

~

H

�1

(A) !

~

H

�1

(X)

! 0

for X � A and A 6= ;.

Thus we have

H

j

(jCj; jCj n p) '

~

H

j�dim��1

(jlink

C

�j) (=

~

H

j�dim��1

(link

C

�)); � � � (��)

for all j and p 2

�

�

.

Now we show that the following conditions are equivalent.

(i)

~

H

i

(jCj) = 0 = H

i

(jCj; jCj n p) for i < dimC and p 2 jCj,

(ii)

~

H

i

(link

C

�) = 0 except i = dim link

C

� for any face � of C.

The �rst remark is that both conditions imply that C is pure. That (i) implies the purity

of C follows from the fact that H

k

(jCj; jCj n p) ' Z if p 2

�

�

and � is a k-dimensional facet.

That (ii) implies the purity of C is veri�ed as follows: Let C satisfy (ii) but non-pure, and

D the subcomplex of C generated by the facets whose dimension is less than dimC. Then if

we take a facet of C \D to be �, then link

C

� is disconnected but its dimension is at least

one. This contradicts the condition of (ii) because disconnected complex � with dimension

at least one has

~

H

0

(�) 6= 0.

Now because C is pure, dim link

C

� + dim� + 1 = dimC in both (i) and (ii). The condition

~

H

i

(link

C

�) = 0 for i < dim link

C

� of (ii) is equivalent to the condition

~

H

i�dim��1

(link

C

�) =

0 for i < dimC and � 6= ;, and this is equivalent to the condition H

i

(jCj; jCj n x) = 0 for

i < dimC from (��). For � = ;, the condition is equivalent to the condition H

i

(jCj) = 0 for

i < dimC. Thus (i) and (ii) are equivalent.
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Especially, triangulations of balls and spheres are all Cohen-Macaulay (over Z).

The typical property of Cohen-Macaulayness is the following.

Proposition 2.23. The h-vectors of Cohen-Macaulay simplicial complexes are nonnegative.

For the proof of this proposition, see for example Stanley [86]. The statement follows from

the fact that h-vectors correspond to the coe�cients of Hilbert series of the face ring of C.

The class of constructible simplicial complexes is an important subclass of Cohen-

Macaulay simplicial complexes.

Proposition 2.24. A constructible simplicial complex is Cohen-Macaulay.

Proof. (Hibi [48, Lemma 23.6])

This was originally proved by Hochster [49] in terms of face rings, but Reisner's characteri-

zation (De�nition 2.21) makes the proof very easy.

The proof is by induction on the number of facets and the dimension. If a d-dimensional

constructible simplicial complex C is a simplex, then it is Cohen-Macaulay because all of the

reduced homology groups of a ball are 0.

If C is not a simplex, then there are two constructible simplicial complexes C

1

and C

2

with C

1

\ C

2

is a (d� 1)-dimensional constructible complex and C

1

[ C

2

= C. The reduced

homology groups of C, C

1

, C

2

have the following \reduced Mayer-Vietoris exact sequence":

� � � !

~

H

i

(C

1

\ C

2

) !

~

H

i

(C

1

)�

~

H

i

(C

2

) !

~

H

i

(C

1

[ C

2

)

!

~

H

i�1

(C

1

\ C

2

) !

~

H

i�1

(C

1

)�

~

H

i�1

(C

2

) !

~

H

i�1

(C

1

[ C

2

)

! � � �

!

~

H

0

(C

1

\ C

2

) !

~

H

0

(C

1

)�

~

H

0

(C

2

) !

~

H

0

(C

1

[ C

2

)

!

~

H

�1

(C

1

\ C

2

) !

~

H

�1

(C

1

)�

~

H

�1

(C

2

) !

~

H

�1

(C

1

[ C

2

)

! 0

Here by induction hypothesis,

~

H

i

(C

1

),

~

H

i

(C

2

) are 0 for all i � d � 1 and

~

H

i

(C

1

\ C

2

) are

0 for all i � d � 2, the above exact sequence implies that

~

H

i

(C) (=

~

H

i

(link

C

;)) is 0 for all

i � d� 1.

For the links link

C

� with � 6= ;, the reduced homology groups of the link of the dimensions

less than dim link

C

� disappear from the induction hypothesis on the dimension because

link

C

� is constructible from Proposition 2.14 and has a smaller dimension.
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Partitionability

De�nition 2.25. A simplicial complex C is partitionable if the set of faces of C is partitioned

into the sets of the form f� : �(�) � � � �g; where � is a facet of C and �(�) is a face of �.

In the term of face posets, a simplicial complex is partitionable if its face poset (minus

the top element) can be partitioned into intervals whose tops are facets.

One class of partitionable simplicial complexes are shellable simplicial complexes in which

a shelling F

1

; F

2

; : : : ; F

t

of a shellable simplicial complex C induces a partition in a natural

way:

(i) For F

1

, we set �(F

1

) = ;.

(ii) For F

i

with i � 2, we set �(F

i

) to be the unique minimal face R

i

of F

i

which is not

contained in F

1

[ F

2

[ � � � [ F

i�1

.

The following �gure shows the partition induced by a shelling.

a

b

c

d

f

d e f

;

C

e

b ca

1

3

4

2

5

1 2 3 4 5

For a pure partitionable simplicial complex, there is a combinatorial interpretation of

h-vectors, that is, we have the following proposition.

Proposition 2.26. For a partitionable simplicial complex, we have

h

i

(C) = #f� : dim�(�) = i� 1g:

For example in the above �gure, f(C) = (1; 6; 10; 5) and h(C) = (1; 3; 1; 0), this coincides

with the numbers #fi : dim�(�) = i� 1g. The proof is just by counting the faces contained

in each intervals using the fact that each interval is a boolean lattice. (See for example

Ziegler [98], Stanley [86], Kleinschmidt and Onn [54], etc.)

From the way how a shelling induces a partition described above, h-vectors can be cal-

culated easily from a shelling F

1

; F

2

; : : : ; F

t

of C: h

k

(C) is the number of i's such that the

minimum face of F

i

which is not contained in F

j

with j � i � 1 has dimension k � 1. (See
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Ziegler [98, p.247].) For this, we need only one arbitrary shelling because h-vector is already

determined by its f -vector and we get the same answer no matter how we take a shelling.

A consequence of the calculation of h-vectors from the partition as above is that h-vectors

of partitionable simplicial complexes are non-negative. This mysterious coincidence with

the fact that Cohen-Macaulay simplicial complexes have non-negative h-vectors leads us to

the conjecture of Garsia [40] and Stanley [85]: Cohen-Macaulay simplicial complexes are

partitionable. Some related results are shown such as Duval and Zhang [34], but the problem

is still open. (The converse direction is not true: There are partitionable simplicial complexes

which are not Cohen-Macaulay, see Stanley [86, p.85].)

Important study about partitionability was done in Kleinschmidt and Onn [54]. They

showed that polyhedral fans and oriented matroid polytopes are signable, which in the sim-

plicial case means that they are partitionable. Both of these two classes are not known to be

shellable or not, but their result shows the partitionability not using shellability. Moreover,

their arguments can be used to show the upper bound property not using shellability or even

Cohen-Macaulayness. Further study can be found in Onn [73]. Thus partitionability is a very

useful and important property, but we do not treat in this thesis except for the calculation of

h-vectors in Chapter 5.
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Simplicial collapsing

De�nition 2.27. If a face G of a simplicial complex C is contained in only one face F

and dimG = dimF � 1, then we write C &

s(e)

(C � fG;Fg) and we call this operation an

elementary simplicial collapse. (This only happens when F is a facet. Such face G is called

free.)

If a simplicial complex C

0

is derived by a sequence of elementary simplicial collapse from

C, C simplicially collapses to C

0

and denoted by C &

s

C

0

. Especially if C

0

is one vertex, then

C is simplicially collapsible.

If C has a subdivision which is simplicially collapsible, then C is (polyhedrally) collapsible,

denoted by C & C

0

.

F

G

There is another but equivalent way to de�ne collapsing: a face G is free if it is contained

in only one facet, and an elementary simplicial collapsing removes all the faces which contains

G, for example Bj�orner [15] or Welker [95].

Collapsing is a fundamental tool in combinatorial topology, for example in the regular

neighborhood theory. As is easily observed, each elementary simplicial collapse is a strong

deformation retract which is performed by a combinatorial operation, especially it preserve

the homotopy type of the underlying space. So collapsing is a combinatorial analogy of

homotopy equivalence. In particular, a collapsible simplicial complex has a contractible (i.e.,

homotopy equivalent to one point) underlying space.

The relation between shellability and simplicial collapsibility is not clear because collapsi-

ble simplicial complexes are always contractible but shellable simplicial complexes can have

non-zero homology. But if we restrict to the contractible case, they certainly have a strong

relation.

Proposition 2.28. A shellable contractible simplicial complex is simplicially collapsible.

The proof is by performing elementary simplicial collapses in the reverse way of a shelling.

1

3

2

5

4
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2.4 The hierarchy of combinatorial decomposition properties

Summarizing the relations among the combinatorial decomposition properties introduced in

the last section, we re-state the following proposition.

Proposition 2.29. For simplicial complexes, the following implications hold:

� vertex decomposable ) shellable ) constructible ) Cohen-Macaulay,

� extendably shellable ) shellable,

� shellable ) partitionable,

� contractible and shellable ) simplicially collapsible,

and for polytopal complexes, we have

� extendably shellable ) shellable ) constructible.

All of the implications in the proposition is strict:

� There are shellable but not vertex decomposable simplicial complexes. For example, the

existence of polytopes with non-vertex decomposable boundary is known. (Lockeberg's

polytope, see Klee-Kleinschmidt [53].)

� There are constructible but not shellable simplicial complexes. For instance, Rudin's

ball, Gr�unbaum's ball, Ziegler's ball are such example, see Proposition 4.6.

� There are Cohen-Macaulay but not constructible simplicial complexes. For this, trian-

gulations of balls and spheres which are not constructible will be shown in Chapter 3.

Also homology spheres which are not homeomorphic to spheres (e.g., Poincar�e sphere)

are Cohen-Macaulay but not constructible.

� There are shellable simplicial complexes that are not extendably shellable. Such exam-

ples are shown in Ziegler [98] and Ziegler [99]. He showed that the boundary complexes

of almost all 4-polytopes are not extendably shellable while all the boundary complexes

of polytopes are shellable.
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� There are partitionable but not shellable simplicial complexes. For example, the fol-

lowing triangulation of the projective plane is not shellable (because it is not Cohen-

Macaulay (over Z)) but partitionable.

1

2

3

1

6

5

4

6

4

� There are simplicially collapsible but not shellable complexes.

In the case of pseudomanifolds, the �rst line of implications is re�ned as follows.

Proposition 2.30. For pseudomanifolds, the following implications hold:

� vertex decomposable ) shellable ) constructible ) PL-balls or PL-spheres

) balls or spheres ) Cohen-Macaulay.

As same as above, these re�ned implications are also strict.

� There are PL-balls and PL-spheres which are not constructible. This will be shown in

Chapter 3.

� There are balls and spheres which are not PL. The existence of non-PL spheres follows

from Edwards' \double suspension theorem" [35] or its generalized version by Can-

non [27].

� There are Cohen-Macaulay simplicial complexes which are not balls or spheres: homol-

ogy spheres are Cohen-Macaulay.
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2.5 The case of 2-dimensional pseudomanifolds

In the case of 2-dimensional pseudomanifolds, many good properties are known to hold which

are never true in general. Among them, we see in this section that all the inverse implica-

tions of Proposition 2.30 holds for 2-dimensional pseudomanifolds, and that combinatorial

decomposition properties are topological property.

We start from the most important proposition, which we will use many times throughout

this thesis. This is a classical result.

Proposition 2.31. All polytopal 2-balls and 2-spheres are shellable (thus constructible).

Proof. We show that all 2-balls are shellable. The case of 2-spheres follows immediately:

Choose one facet � of a 2-sphere and remove it, then the remained 2-ball (2-sphere minus

2-ball is a 2-ball) is shellable and its shelling extends to that of whole 2-sphere by just adding

� in the end of the shelling.

To show the shellability of a 2-ball, we construct its shelling in a reverse way. What we

show in the sequel is that if B has more than one facets, then every 2-ball B has a facet � such

that (B � �) \ � is an arc (i.e., a simple path). If this is shown, then we successively remove

such � from the ball and we get a shelling by reversing the way of this removal sequence.

For this, we �nd a facet � which meets with @B by an arc and starting from one endpoint

of the arc and following the boundary of � running in the interior of B, either we reach

another endpoint of the arc or meet with @B in another point. In the former case, we are

done. In the latter case, the arc divide B into two balls and we use the following claim.

Claim. If a 2-ball D � B has the property that (@D � @B) is an arc k contained in the

boundary of one facet of B, then D contains a facet � such that (@� � @B) is an arc.

The claim is shown by induction on the size of D. First, if D has only one facet, then

the claim above is trivially true. If D has more than one facets, we choose one facet �

0

of D

such that �

0

meets with @B by at least one arc. If (@�

0

� @B) is one arc, then we are done.

Else, it consists of at least two arcs, so we can take k

0

from one of the arcs which is di�erent

from k. Then k

0

divides B into two balls D

1

and D

2

such that D

1

is contained in D. Now,

D

1

satis�es the condition of the claim and has smaller number of facets than D, and the

induction hypothesis implies that D

1

(thus D) contains a facet � with the property we need.

D

k

k

0

D

1
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The following proposition follows immediately from the claim in the proposition above.

This proposition for the special case in simplicial 2-balls plays the key role in Chapter 4.

Proposition 2.32. Let a simplicial 2-ball B have a spanning edge which divides B into two

2-balls B

1

and B

2

. If B

i

has no interior vertices, then it has a facet (2-simplex) with two

edges in @B, for i = 1; 2.

Proof. The claim in the proof of Proposition 2.31 assures the existence of a facet � such that

(B

i

� �) \ � is an arc. But by assumption, B

i

has no interior vertices, which means that the

arc (B

i

� �) \ � is a spanning edge, which means that � has two edges in @B.

Proposition 2.31 together with Corollary 2.17 concludes that shellability of 2-

pseudomanifolds is determined by their topology, that is, a 2-pseudomanifold is shellable

if and only if it is a 2-ball or a 2-sphere.

Corollary 2.33. A 2-pseudomanifold is shellable if and only if it is a 2-ball or a 2-sphere.

Or equivalently:

Corollary 2.34. A 2-pseudomanifold is constructible if and only if it is a 2-ball or a 2-

sphere.

Thus we can conclude that:

Corollary 2.35. A constructible 2-pseudomanifold is shellable.

Also Proposition 2.31 implies the following corollary.

Corollary 2.36. All 2-balls and 2-spheres are extendably shellable.

For vertex decomposability, we also have the following proposition, shown by Provan and

Billera [74].

Proposition 2.37. All 2-balls and 2-spheres are vertex decomposable.

Proof. It is enough to show the case of 2-balls, because in the case of 2-spheres, every vertex

x of a 2 sphere S can be taken as the �rst shedding vertex making the remaining dl

S

x to be

a 2-ball.

For a 2-ball B, we show in the following that there always exists a vertex x in @B such

that no spanning edge is incident to x. If this is shown, such a vertex x becomes a shedding

vertex by an induction argument because in this case link

B

x is a connected 1-complex which

is easily shown to be vertex decomposable, and dl

B

x is a 2-ball and its vertex decomposability

is shown by induction.

To show the existence of such a vertex x, we �rst choose a vertex x

0

arbitrary from @B.

If this satis�es the condition, we are done. Else x

0

is incident to a spanning edge. For such a

case, we show the following claim.
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Claim. If a 2-ball B has a spanning edge which divides B into two 2-balls B

1

and B

2

, then

each divided two ball B

i

has a vertex x in @B such that x is incident to no spanning edge.

The proof of the claim is by induction on the number of facets of B

i

. If B

i

has only one

facet, then the statement is clear. If not, take a vertex x

0

on B

i

\ @B di�erent from the two

endpoints of the spanning edge dividing B

1

and B

2

. If x

0

is not incident with any spanning

edge of B, then we are done. Else there is a spanning edge x

0

y. If we take this spanning edge

as the �rst spanning edge, then it divides B into B

0

1

and B

0

2

such that B

0

1

is smaller than B

1

and B

0

1

has the vertex we are looking for by the induction hypothesis.

x

0

y

spanning edge

B

1

B

0

1

The rest reverse implications of Proposition 2.31 are \spheres or balls ) PL-spheres or

balls" and \Cohen-Macaulay ) spheres or balls," and these two implications also known

to hold. The former follows from the fact that triangulated non-PL spheres do not exist

in dimensions at most three. (This is open for dimension 4.) The latter follows from the

classi�cation of 2-surfaces: there is no 2-surfaces with

~

H

1

= 0 except for balls and spheres.

In summary, we have the following theorem.

Theorem 2.38. For 2-pseudomanifolds, vertex decomposability, extendable shellability,

shellability, constructibility, being 2-balls or 2-spheres, being PL-2-balls or PL-2-spheres, and

Cohen-Macaulayness, are all equivalent. Moreover, these properties are topological.
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2.6 Knots and tangles

This section provides a brief introduction to knots and tangles. For further study, there are

many textbooks on knots, for example, Lickorish [58], Livingston [59], Rolfsen [76], etc.

A knot is a simple closed tame arc contained in some 3-dimensional manifold (with bound-

ary)M

3

, where tame means that it is piecewise linear. In this thesis, we always treat the case

where M

3

is a 3-ball B

3

or a 3-sphere S

3

. There are several ways to de�ne knot equivalence

for example using Reidemeister moves, ambient isotopy, or homeomorphism of M

3

. In this

thesis, we use the most primitive way for the de�nition of knot equivalence as follows.

De�nition 2.39. Let k and k

0

are two simple closed piecewise linear arcs. If k =

p

0

p

1

� � � p

i

p

i+1

� � � p

t

p

0

and k

0

= p

0

p

1

� � � p

i

qp

i+1

� � � p

t

p

0

and the triangle p

i

qp

i+1

does not in-

tersect with other part of the arc, then k and k

0

are related by an elementary move. If two

knots are related by a sequence of elementary moves, then these two knots are equivalent. We

also say that these two knots are of the same type, and the representative of the equivalence

class is mentioned as a knot type.

It can be deduced from this de�nition that if the di�erence between two knots bounds a

disk, then they are equivalent.

If the knot itself bounds a disk then it is trivial.

De�nition 2.40. A knot k is trivial or is an unknot if there is a disc (2-ball) in M

3

whose

boundary is k. If not, k is knotted.

The reason we use this de�nition is because we want to use the equivalence relation in

a slightly generalized way than is used in usual contexts. That is, if M

3

= B

3

, we allow

some parts of the knot to go onto the boundary or into the interior during the sequence of

elementary moves, while usually the knots are required to be in the interior of M

3

all the

time.
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The modi�cations in the above �gure are not equivalent if we de�ned the equivalence relation

by ambient isotopy or homeomorphism of M

3

, but are equivalent by our de�nition. But we

should note that this does not contain a radical change between the usual de�nition and our

de�nition. In fact, all the properties and techniques are valid for our de�nition: what we

should do to apply usual argument is just to move the arcs on the boundary into the interior

by slightly perturbing the arc.

A spanning arc is a simple tame arc contained in a 3-ball B

3

with its two end points lying

in the boundary. If this arc is made of one edge of a triangulation of B

3

and contained in

the interior, then it is especially called a spanning edge. Again here we allow some part of

spanning arcs to be contained in the boundary of B

3

while usual treatment requires the arc

except for the endpoints to be contained in the interior, as same as the knot case above.

Let us imagine to join two endpoints of a spanning arc by a simple tame arc lying in the

boundary of B

3

to get a knot in B

3

. Now suppose we make two knots k and k

0

from one

spanning arc in this way by joining di�erently in the boundary of B

3

. Then what we have

are two knots which are equivalent to each other. This fact can be easily shown from the

fact that every simple closed curve in a 2-sphere S

2

is not knotted, i.e., bounds a disc. In

our situation, two knots k and k

0

di�ers only in the part contained in the boundary of B

3

. If

the endpoints of the spanning arc are a and b and p

1

is a point in k where the segment from

a to p

1

is common with k

0

but from p

1

to the next common point p

2

is di�erent, then two

di�erent arcs from p

1

to p

2

together make a simple closed arc which bounds a disk. Then

we can perform a sequence of elementary moves from the part of k

0

to that of k to reach

the situation that the arcs from a to p

2

are the same. Repeating this procedure, we �nally

construct a sequence of elementary moves from k

0

to k.

This fact that we always get the same type knot no matter how we join two endpoints of

a spanning arc enables us to de�ne the knot type of spanning arcs as follows.

De�nition 2.41. Two spanning arcs are equivalent if the knots derived by joining two end-

points of each spanning arc by a tame simple arc in the boundary of B

3

are equivalent. If

the knot is trivial, then the spanning arc is trivial or unknotted, and otherwise knotted. The

type of a spanning arc is the type of the knot derived from the spanning arc.

There is another way to de�ne the equivalence of knotted spanning arcs using elementary
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moves as same as the case of knots. For this we use the following two types of elementary

moves: we say that two spanning arcs l and l

0

are related by an elementary move if

(i) l = p

0

p

1

� � � p

i

p

i+1

� � � p

t

and l

0

= p

0

p

1

� � � p

i

qp

i+1

� � � p

t

, and the triangle p

i

qp

i+1

does not

intersect with other part of the arc, or

(ii) l = p

0

p

1

� � � p

t�1

p

t

and l = p

0

p

1

� � � p

t�1

q, and the triangle p

t�1

p

t

q does not intersect

with other part of the arc,

and two spanning arcs are equivalent if there is a sequence of elementary moves from l to l

0

.

(i)

(ii)

That this way of de�nition is the same as De�nition 2.41 is easily seen from the De�nition 2.39

of equivalence of knots.

A tangle is a mutually disjoint set of knots and spanning arcs in a 3-ball B

3

.

For tangles, we de�ne the equivalence relation as before.

De�nition 2.42. Two tangles t and t

1

are related by an elementary move if

(i) t = p

0

p

1

� � � p

i

p

i+1

� � � p

t

and t

0

= p

0

p

1

� � � p

i

qp

i+1

� � � p

t

, and the triangle p

i

qp

i+1

does not

intersect with other part of the tangle, or

(ii) t = p

0

p

1

� � � p

t�1

p

t

and t = p

0

p

1

� � � p

t�1

q, and the triangle p

t�1

p

t

q does not intersect

with other part of the tangle,

and two tangles are equivalent if there is a sequence of elementary moves from t to t

0

. The

equivalence class is mentioned as the type of tangles.

By de�nition, knots and spanning arcs are special cases of tangles. To de�ne triviality or

knottedness, intuitively, we want to de�ne a tangle is trivial when it is equivalent to a set of
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parallel unknotted spanning arcs and a set of unknots which are not linked. To de�ne this

precisely, we need the concept of a semispanning disc which is a disc in B

3

whose boundary

consists of two arcs, one lies in the boundary of B

3

and one is a spanning arc of B

3

. If there is

a semispanning disc which has a spanning arc l on the boundary, then l is always trivial, and

conversely if l is trivial, then there is a semispanning disc containing l on its boundary. So

having a semispanning disc is equivalent to unknottedness. This situation is also said that the

spanning arc is straight. (This term \straight" do not mean that it is straight geometrically.)

For knots, we de�ne spanning discs as same as the case of spanning arcs, that is, a spanning

disc of a knot k is a disc whose boundary is k. Now we de�ne triviality of tangles as follows.

De�nition 2.43. A tangle is trivial if its spanning arcs and knots have semispanning discs

or spanning discs which are mutually disjoint. Otherwise it is tangled.

Especially, if a tangle made of only spanning arcs are trivial, they are called simultaneously

straight.

Remark that the knottedness and triviality for knots or spanning arcs de�ned above is

equivalent to this de�nition as special cases.

The concept of links is lying between that of knots and tangles, that is, a link is a set

of tame simple closed arcs in B

3

(or M

3

in general). (Be careful that this \link" is di�erent

from the \link" de�ned on simplicial and polytopal complexes in Section 2.1!)

Borromean link
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A simple way to construct complicated knots in S

3

is by taking the connected sum of

knots. This operation is described in the following �gure.

K

1

K

2

K

1

#K

2

Precise description is as follows: Given two knotsK

1

andK

2

with �xed orientations embedded

in S

3

's, remove a small ball from each of both S

3

's such that the intersection of the ball and

the knot is a trivial spanning arc, resulting two balls with knotted spanning knots of types K

1

and K

2

. Then join these two balls by their boundary such that the endpoints of the spanning

arcs meets, to get an oriented knot K

1

#K

2

in a 3-sphere. It is known that this operation is

well-de�ned, and it is associative, the unique identity is the unknot, and there is no inverse

for a nontrivial knot. Moreover, any knot can be decomposed uniquely into prime knots, i.e.,

knots that are not the connected sums of any other two non-trivial knots.

Note that there can be di�erent connected sums ofK

1

andK

2

if we do not give orientations

to the knots. So the connected sum is not well-de�ned without the orientation. But we will

abuse this concept for non-oriented knots in the following. This will not cause us a trouble

because giving di�erent orientations only a�ect the orientation of each prime knot in the

prime knot decomposition.

To see that this connected sum operation produces complicated knots, let us start from

the simplest knot, the trefoil knot �. We denote �

#n

to be the connected sum of n copies of

�, i.e.,

n times

z }| {

�#�# � � �#�.

Trefoil knot �

� � �

�

#n
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One way to measure the complexity of a knot is to see the fundamental group of the

complement, i.e., of the space S

3

� (the regular neighbourhood of the knot). This group is

called a knot group. In our case, the knot group of � is representable by two generators, while

�

#n

needs at least n + 1 generators. (See Goodrick [41].) We will see the same situation

for another complexity index, the bridge index, in Chapter 3. There the bridge index of the

trefoil knot � is 2, and that of �

#n

is n + 1. (Although these two indices coincides in this

case, they are di�erent in general. The knot complement can be represented by generators of

the size of the bridge index, but there is smaller representation in general.)

A generalization of knots and spanning arcs to the high dimensions is the concept of ball

pairs and sphere pairs.

De�nition 2.44. A ball pair is a pair (B

1

; B

2

) of a d-ball B

1

and a k-ball B

2

such that B

2

is embedded in B

1

and @B

2

is contained in @B

1

. A sphere pair is a pair (S

1

; S

2

) of a d-sphere

and a k-sphere such that S

2

is embedded in S

1

.

The standard ball pair of dimensions d and k is the pair of �

d�k

�

k

and �

k

, where �

k

is

the standard simplex and �

d�k

�

k

is its (d� k)-fold suspension, and the standard sphere pair

is the pair of the boundaries of the standard ball pair of dimensions d+ 1 and k + 1.

A ball pair or sphere pair is pair!unknottedunknotted if there is a homeomorphism to the

standard ball pair or the standard sphere pair, and otherwise pair!knottedknotted.

The following is known.

Proposition 2.45. If there are two unknotted ball pairs (B

1

; B

2

) and (B

0

1

; B

0

2

) of dimensions

d and k, the following holds.

� If these two unknotted ball pairs meet by a ball-pair (D

1

;D

2

) of dimensions d � 1 and

k�1 such that D

1

2 @B

1

\@B

0

1

and D

2

2 @B

2

\@B

0

2

, then the ball pair (B

1

[B

0

1

; B

2

[B

0

2

)

is an unknotted ball pair.

� If these two unknotted ball pairs meet by a sphere-pair (S

1

; S

2

) of dimensions d � 1

and k � 1 such that S

1

= @B

1

= @B

0

1

and D

2

= @B

2

= B

0

2

, then the sphere pair

(B

1

[B

0

1

; B

2

[B

0

2

) is an unknotted sphere pair.

This proposition is shown, for example, in Zeeman [96, Lemmas 18 and 19]. Later in

Sections 3.2 and 3.3 we will use this for the case of dimensions 3 and 1: the case of ordinary

knots and spanning arcs. For such special cases, the proof is very easy. For the ball pair case,

see the following �gure. Let us assume that the arc ab in the left 3-ball C

1

and the arc bc
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in the right 3-ball C

2

is not knotted and show that the arc abc is not knotted in the 3-ball

C = C

1

[ C

2

.

p

x z

y

a

b

c

For this, let p be a point on @C \ (C

1

\ C

2

), y an arc from b to p contained in C

1

\ C

2

, x

an arc from a to p contained in @C

1

\ @C, and z an arc from c to p contained in @C

2

\ @C.

Then x and y together form an arc in @C

1

which joins a and b. Because ab is an unknotted

spanning arc of C

1

, the closed arc ab-byp-pxa is a trivial knot, that is, it bounds a 2-ball.

(Here we may assume that the arc byp is the only part of the 2-ball that is contained in @C

2

.)

Similarly bc-czp-pyb is a trivial knot that bounds a 2-ball. The union of the two 2-balls is

again a 2-ball, and it proves that the knot ab-bc-czp-pxa, and hence the spanning arc ab-bc,

are not knotted.

The sphere pair case is almost the same. See the following �gure in which the spanning

arc abc in the left 3-ball C

1

and the spanning arc ab

0

c in the right 3-ball C

2

is unknotted, and

we show that the knot abcb

0

a is not knotted in the sphere C = C

1

[ C

2

. (The case that C is

a 3-ball also works.)

x

a

c

b b

0

Take an arc x in C

1

\ C

2

from a to c. (This arc exists since C

1

\ C

2

is a 2-ball or 2-sphere.)

the closed curves abc-cxa and ab

0

c-cxa both bound 2-balls. These 2-balls intersect in the

curve axc, and hence their union is a 2-ball bounded by the closed arc abc-cb

0

a, which shows

that the knot abc-cb

0

a is trivial.
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Chapter 3

Knots and combinatorial

decompositions

This chapter treats the case of 3- and higher dimensional pseudomanifolds, especially the case

of triangulations of 3-balls and 3-spheres. The main problem considered here is to construct

non-constructible triangulations of 3-balls and 3-spheres. Non-shellable triangulations of 3-

balls and 3-spheres were known, but the case of non-constructible ones were open. For this

we extend the well-known construction of non-shellable 3-balls and spheres using knots, and

show many stronger results for combinatorial decompositions. (Another construction of non-

constructible 3-balls, not using knots, will appear in Chapter 4.)

Most of the materials of this chapter are from a joint work with G�unter M. Ziegler (Sections

3.2 through 3.4 and 3.8) and with Richard Ehrenborg (Sections 3.5 through 3.9).

In Sections 3.1 to 3.3, we discuss the existence of non-constructible 3-balls and 3-spheres

starting from an extension of Furch's construction of non-shellable 3-balls: we show that 3-

balls having a knotted spanning arc made of at most two edges are not constructible. We

also show that non-constructible 3-spheres exist. This solves an open problem in Danaraj and

Klee [32]. Non-constructible 3-spheres given in Section 3.3 are 3-spheres containing a knot

made of three edges, which were shown to be non-shellable by Lickorish under some additional

condition. Thus our result is a strengthening of his result. The existence of non-constructible

3-balls and 3-spheres are extended to the case of higher dimensions in Section 3.4. In Sec-

tions 3.5 to 3.7 we discuss extensions of the results of Sections 3.1 to 3.3 by introducing the

bridge index of knots and tangles, and conditions which implies non-constructibility are given

in terms of the bridge index and the size of knots or tangles contained in the triangulations.

This also gives an answer to Hetyei's conjecture on shellability of certain cubical decompo-

sitions of spheres. Constructibility of cell partitionings is also discussed in Section 3.9. In

Section 3.8, an analogue of the results of Sections 3.1 to 3.7 are given for vertex decomposabil-

ity. Here conditions which imply non-vertex decomposability are given by the size of knots
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contained in the triangulations, as same as the case of constructibility but in a weakened

way. Thus these results provide a hierarchy of combinatorial decomposition properties mea-

sured by the size of knots or knotted spanning arcs contained in the triangulations, which is

summarized in the last Section 3.10.
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3.1 Furch's knotted hole ball

Historically, the �rst appeared example of a non-shellable triangulation of a 3-ball seems to be

Furch's knotted hole ball. (Appears in Furch [38] and also described in Bing [10], Stillwell [88],

Ziegler [98], and Ziegler [99].) As the name describes, it uses a special knot embedded in the

triangulation to show its non-shellability. The construction of the triangulation is as follows:

(i) First triangulate a 3-ball �nely enough.

(ii) Starting from a facet which meets the boundary by a 2-face, dig a hole to another side

making a knot in the interior of the original ball.

(iii) Stop digging just one step before corrupting the property that the object is a 3-ball,

that is, leaving one interior edge to the exit to the opposite side.

This construction is sometimes described in the setting of \pile of cubes," that is, dig a knotted

hole from the bottom face of a large pile of cubes to the upper face, and stop digging in the last

step and leave one cube as a \plug" of the hole. If we triangulate each cube into 6 simplices,

we get a non-shellable triangulated 3-ball. (The cubical complex before triangulation is also

a non-shellable cubical 3-ball.) The following �gure shows this construction.

plug

hole
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The critical fact for the non-shellability of Furch's ball is that this ball has a knotted

spanning arc made of one edge (\knotted spanning edge").

�

=

spanning arc made of one edge

In the construction, the knot type of the knotted spanning edge is the type of the knot

we chose for the knotted hole. Thus the type of the knotted spanning edge can be chosen

arbitrary. Further, we can split the edge into n edges by stellar subdivisions without changing

the type of the spanning arc. Thus we have the following proposition.

Proposition 3.1. (Furch [38])

Given a knot K and a natural number n � 1, we can construct a triangulated 3-ball which

embeds a knotted spanning arc k, of the same type as K, as a 1-dimensional subcomplex made

of n edges.

Furch showed that such triangulated 3-balls with a knotted spanning edge is not shellable.

Theorem 3.2. (Furch [38])

A triangulated 3-ball which has a knotted spanning arc made of one edge is not shellable.

The proof is quite simple, shown by induction that every shellable triangulation has no

such spanning arc, that is, a 3-simplex has no such spanning arc, and if

S

i�1

j=1

F

j

has no such

spanning arc in a shelling F

1

; : : : ; F

t

, then the next step (

S

i�1

j=1

F

j

) [ F

i

cannot have one,

either.

The next section will give precise proof for this theorem in a stronger form.

48



3.2 Non-constructible 3-balls

| 3-balls with a knotted spanning arc

The �rst generalization of Theorem 3.2 is to the case of constructibility.

Theorem 3.3. A triangulated 3-ball which has a knotted spanning arc made of one edge is

not constructible.

Because non-constructible complexes are non-shellable, this theorem implies Theorem 3.2.

This generalized theorem is shown in Hachimori [43], which �rstly showed the existence of

non-constructible triangulations of 3-balls. (In the paper, one more example is shown to

be non-constructible, which appears in Section 4.4 in Chapter 4. Before the paper, a non-

constructible regular CW complex was in Walkup [94], a non-shellable cell complex with only

three facets.)

But it turns out that we can be more aggressive for the statement, that is, we have the

following theorem in a more generalized way:

Theorem 3.4. A triangulated 3-ball which has a knotted spanning arc made of at most two

edges is not constructible.

This theorem is shown in Hachimori and Ziegler [45], a joint work of G�unter M. Ziegler

and the author, and this is the key fact to show the main theorem of that paper: the existence

of non-constructible triangulations of 3-spheres. (The paper also contains the materials in

Section 3.8 and Section 4.1.)

From here to the next section, we will describe this striking result according to the method

shown in the paper. The �rst step is to prove Theorem 3.4.

Proof of Theorem 3.4. We show by induction on the number of facets of C that in a con-

structible triangulation C of a 3-ball, a spanning arc that consists of only two edges ab and

bc cannot be knotted. (We may assume that the arc in question has exactly two edges, since

an arc consisting of a single edge can be extended by an edge on the boundary. Recall for

this that we allow parts of spanning arcs to lie in the boundary of the ball. See Section 2.6.)

If C is a single simplex (tetrahedron), then the arc cannot be knotted. Otherwise C

decomposes into two constructible complexes C

1

and C

2

as in De�nition 2.11 of constructibil-

ity; both C

1

and C

2

are triangulated 3-balls by Proposition 2.16. There are two cases to be

considered.
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Case 1: The two edges ab and bc are both contained in C

1

. They form a spanning arc ab-bc

of C

1

, which by induction cannot be knotted.

C

C

2

C

1

Case 2: One edge ab is contained in C

1

and the other one bc is contained in C

2

. C

1

is

constructible, so by induction ab is an unknotted spanning arc of C

1

, and similarly for

the arc bc in C

2

.

C

C

1

C

2

c

a

b

In this case the unknottedness of ab-bc is shown from Proposition 2.45.

Thus we have the following corollary from Proposition 3.1.

Corollary 3.5. There are non-constructible triangulations of 3-balls.

Remark that this theorem is sharp, that is, the existence of a knotted spanning edge with

three edges will not lead to non-constructibility. The following �gure shows why the proof

fails for the case with three edges.

C

1

C

2

C

In the �gure, the whole ball C has a knotted spanning arc made of three edges, but each

subdivided balls C

1

and C

2

need not have one made of less than or equal to three edges. This

observation is realized by the following \real" example which is shellable but has a knotted

spanning arc made of three edges.
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Example 3.6. (A shellable 3-ball with a knotted spanning arc consisting of 3 edges.)

Let C

1

be a pile of 6 � 6 � 1 cubes in which each cube is split into 6 tetrahedra. Then

C := C

1

[ (b � (gray faces)) = C

1

[ (b � F

1

) [ (b � F

2

) [ � � � is a shellable 3-ball because C

1

is

shellable, and the arc ab-bc-cd is a knotted spanning arc of the 3-ball as is indicated in the

upper part of the �gures.

�

=

b

F

1

F

2

a

d

C = (pile of cubes) [ (b � F

1

) [ (b � F

2

) [ � � �

c

F

3

� � �
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3.3 Non-constructible 3-spheres

| 3-spheres with a knot consisting of 3 edges

Using Theorem 3.4, we can now prove the theorem which shows the existence of non-

constructible 3-spheres.

The theorem we will show in this section is that a 3-sphere is not constructible if it has

a knot made of only three edges. To conclude from this the existence of non-constructible

triangulations of 3-spheres, we need to show that triangulations which embeds a knot in such

a way really exist. In fact, we can construct triangulations which embed a knot of any type

consisting of any number of edges.

Proposition 3.7. Given a knot K and a natural number n � 3, we can construct a trian-

gulated 3-sphere or ball which embeds a knot k, of the same type as K, as a 1-dimensional

subcomplex made of n edges.

Proof. Such construction is well-known in combinatorial topology. We refer here Lickorish's

paper [57], but the origin seems much older than it.

We �rst show the case of 3-spheres and n = 3. We prepare a triangulated 3-ball C which

has a knotted spanning edge with endpoints a and b, for example by the Furch's \knotted

hole" construction described in Section 3.1. Remark that the knot type of the spanning edge

can be arbitrarily chosen: for example, if we make a knotted hole such that the hole has the

same knot type as K, then we have a knotted spanning edge of the same type as K. Then we

make a join over the boundary of C, that is, let

~

C = C[(@C�v) where v is a newly introduced

vertex. The resulting

~

C is a triangulated 3-sphere because the operation of taking join over

the boundary can be seen as joining two 3-balls by their boundaries (see Proposition 2.4),

and the closed arc k = a-b-v-a is a knot of the same type as K, made of just three edges.

If n is larger than 3, the required triangulation can be obtained by stellarly subdividing

the 3-sphere with a knot made of three edges.

A 3-ball embedding such a knot can be obtained by removing one facet from a 3-sphere

constructed above.

Now the theorem.

Theorem 3.8. If a triangulated 3-sphere or 3-ball has a knot made of three edges, then it is

not constructible.

Proof. We will show that in a constructible 3-ball or 3-sphere C every knot consisting of three

edges (= \triangle") is trivial.

We use induction on the number of facets. The case of a simplex is clear. Otherwise the

complex C can be divided into two constructible complexes C

1

and C

2

. From Proposition 2.16
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both C

1

and C

2

must be 3-balls. If one of them contains all the three edges of a triangle �,

then � is trivial by induction. If not, then one of them, say C

1

, has two edges ab and bc of

�, and the other one C

2

has the third edge ca of �. Now ab-bc is a spanning arc of C

1

and

ca is a spanning arc of C

2

, and both spanning arcs are not knotted from Theorem 3.4. This

implies that � is trivial from Proposition 2.45 (or from the fact that the connected sum of

two trivial knots is trivial).

This theorem originally has a di�erent proof, using another property of constructible 3-

spheres described later in Section 4.1. This simpli�ed version is brought to us from a comment

of Robin Forman.

From Proposition 3.7 and Theorem 3.8, we have the following corollary.

Corollary 3.9. There are non-constructible triangulations of 3-spheres.

Danaraj and Klee [32] asks whether every 3-sphere is constructible or not. Thus the

corollary above solves this open problem.

Theorem 3.8 generalizes the following theorem proved by Lickorish in two ways.

Theorem 3.10. (Lickorish [57])

If a triangulated 3-sphere (or 3-ball) has a knot made of three edges such that the fundamental

group of the knot complement has no less than 4, then it is not shellable.

Our Theorem 3.8 extends this theorem of Lickorish from the shellability case to the con-

structibility case, and also removes the complexity condition of the knot.

Lickorish himself mentions in his paper that the complexity condition cannot be removed

from his theorem. His method fails for simple (= not complicated enough) knots, for example,

a trefoil knot or a connected sum of two trefoil knots is not enough. On the other hand, our

theorem guarantees non-constructibility, thus non-shellability, of such 3-spheres with a knot

of any type. For instance, we conclude that the 3-sphere with a trefoil knot made of three

edges, for which Lickorish's method does not work, is not shellable.

But we should remark that this does not mean that our method is more powerful than

Lickorish's. In fact, Theorem 3.10 above is a corollary to his original theorem. The original

statement is much stronger: it guarantees a property that any facet removal produces a 3-

ball which is not simplicially collapsible from the assumptions. (The fact that shellable balls

are simplicially collapsible implies the theorem from this.) Not to be simplicially collapsible

is a very strong property (see the remark below), and this is why Theorem 3.10 needs the

additional condition of knot complexity. The reason why our Theorem 3.8 does not need the
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complexity condition is because we attacked to constructibility, which is closer to shellability

than simplicial collapsibility.

Remark. Not to be simplicially collapsible is stronger than not to be shellable. For example,

Rudin's ball is not shellable but is simplicially collapsible because of the theorem of Chill-

ingworth [28, 29], and also Lickorish and Martin [56] shows that a 3-ball with a knotted

spanning edge can be simplicially collapsible. (This latter paper is the source of the comment

of Lickorish that the complexity condition of the knot cannot be removed from Theorem 3.10.)

For constructibility, it is not known whether constructible 3-balls are always simplicially

collapsible or not. But non-constructible but simplicially collapsible examples exist: simpli-

cially collapsible 3-balls with a knotted spanning edge!

In concluding this section, we give an example which shows that the number \three" of

the edges of the knot in Theorem 3.8 is sharp.

Example 3.11. (A shellable 3-ball and 3-sphere with a knot consisting of 4 edges.)

This example arises in the same line of construction as Example 3.6. Let C

1

be a pile of 8�6�

1 cubes in which each cube is split into 6 tetrahedra as before. Then the 3-ball C

2

= C

1

[ (b �

(slashed faces minus the face incident to b)) [ (d � (gray faces minus the face incident to d))

has a knot ab-bc-cd-da. This knot ab-bc-cd-da is not trivial because ab-bc-cd is a non-trivial

knotted spanning arc. (It makes a trefoil knot.) Its shellability is easily seen as in Example 3.6.

To get a 3-sphere with a knot consisting of 4 edges, we have only to take a cone over the

boundary of C

2

, that is, C := C

2

[ (v � @C

2

). The shelling of C

2

can be trivially extended to

that of C because @C

2

is shellable since it is a 2-sphere.
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3.4 The case of higher dimensions

In the previous sections, we showed the existence of non-constructible 3-spheres and 3-balls.

This directly implies the existence of non-constructible d-spheres and d-balls, for d � 3.

Corollary 3.12. There exist non-constructible d-balls and d-spheres, for d � 3.

Proof. If C is a constructible complex, then the link of any face of C is always constructible

from Proposition 2.14. This shows the following immediately.

� If C is a non-constructible (d� 1)-ball, then the pyramid over C is a non-constructible

d-ball.

� If C is a non-constructible (d�1)-sphere, then the suspension �C is a non-constructible

d-sphere.

These show the statement together with Corollaries 3.5 and 3.9.

The constructions used in the above proof always produce PL-balls or PL-spheres from

Proposition 2.6. (Note that every triangulated 3-balls are PL.) Thus what we showed is a

stronger statement: there exist non-constructible PL-d-balls and PL-d-spheres in all dimen-

sions d � 3.

It is known that there are non-PL spheres in dimensions d � 5: ifH is a homology 3-sphere

which is not homeomorphic to a 3-sphere, then its double suspension �

2

H is homeomorphic

to a 5-sphere. (This \double suspension theorem" is �rst shown by Edwards [35] for a certain

type of homology sphere, and later generalized to any homology sphere by Cannon [27].) But

�

2

H is not PL. The non-PLness of �

2

H can be seen from the fact that a sphere is a PL-sphere

if and only if it is a combinatorial manifold, i.e., it has a triangulation with the property that

every link of a vertex is a PL-sphere (Proposition 2.2). In �

2

H, the links of the two vertices

used in the second suspension are �H which is not a PL-sphere. Early discussion about the

non-PLness of �

2

H can be found in Curtis and Zeeman [30].

From Proposition 2.16, we already know that constructible d-balls and d-spheres are always

PL, so the existence of non-constructible triangulations of d-balls and d-spheres, for d � 5,

were already known to us, independent to the theory developed in this chapter. But the cases

of dimension 3 and 4, and the PL cases for all dimensions d � 3 are �rstly shown thanks to

our theory.
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Remark. Recently Bj�orner and Lutz [19] (also Lutz [61]) constructed a series of very com-

pact triangulations of non-PL spheres, which has only d+ 13 vertices for dimension d. This

construction is based on their small (with 16 vertices, conjectured to be the smallest) triangu-

lation of Poincar�e sphere and \one-point-suspension". This example (18 vertices for 5-sphere)

is currently the smallest non-constructible triangulation of spheres. On the other hand, what

the author achieved from Theorem 3.8 is an example with 381 vertices and 1928 facets, though

this one has an additional property to be PL and having lower dimension. (Probably we can

slightly reduce the size than this, but far from the example of Bj�orner and Lutz.)
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3.5 Bridge index of knots and tangles (I)

As is shown by Examples 3.6 and 3.11, the numbers of edges in Theorems 3.4 and 3.8 are

both sharp. But there is a possibility to extend them further by introducing a condition for

the complexity of the knot. The idea of using the condition of the complexity of the knot

is seen in several papers: for example, Armentrout [2] and Lickorish [57] for shellability, and

Goodrick [41] for simplicial collapsibility (also see Bing's article [10]).

The measure we use is the bridge index (or the bridge number) of knots, and our goal is

to show that if a 3-sphere C has a knot K with b(K) > e(K), where b(K) is the bridge index

and e(K) is the number of edges K is made of, then C is not constructible.

All the results we will give here from this section through the end of this chapter is taken

from Ehrenborg and Hachimori [36], a joint work of Richard Ehrenborg and the author.

The bridge index is already used for the shellability of cell decompositions in Armen-

trout [2]. The idea to use this complexity index for our constructibility argument is brought

by G�unter M. Ziegler inspired from the fact that the knot in our previously given Example 3.11

is in a \2-bridge position".

We start from reviewing the de�nition of bridge index for knots.

De�nition 3.13. A knot K in B

3

is in an n-bridge position if it is the union of n simulta-

neously straight spanning arcs which are contained in the interior of B

3

and some other arcs

contained in the boundary of B

3

. The bridge index b(K) of K is the minimum number m

such that there is a knot � in B

3

in an m-bridge position which is equivalent to K.

If a knot K is in a 3-sphere S

3

, then take a 3-ball B

3

in S

3

which contains K, and de�ne

the bridge index with respect to B

3

.

This bridge index is �rst introduced by Schubert [80] and many properties are discussed

in it. There are several di�erent de�nitions for bridge index, see for example Livingston [59],

Rolfsen [76] or Adams [1], which are, of course, all equivalent. The de�nition we give here is

the one used in Armentrout [2], Goodrick [41] and Lickorish and Martin [56].
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The unknot is the unique knot with the bridge index 1. It is easy to check that the

trefoil knot has the bridge index 2 from the following �gure because it has a 2-bridge position

embedding and it has larger bridge index than 1 since it is knotted. (There are many other

knots with the bridge index 2.)

2-bridge position

Moreover, Schubert showed the following.

Proposition 3.14. For two knots K

1

and K

2

, b(K

1

#K

2

) = b(K

1

) + b(K

2

)� 1:

Thus, any positive number b has knots with their bridge indices equal to b. For example,

(b � 1)-fold connected sum of trefoils has the bridge index b. (0-fold connected sum is the

unknot.)

If there is a knot in a constructible 3-sphere or a 3-ball and if we repeat the divisions

according to the de�nition of constructibility, the knot will be decomposed into pieces of

tangles. So what we have to discuss is the relation between the bridge index of the original

knot and that of tangles that the knot will be decomposed into. For this, we should �rst

extend the de�nition of the bridge index which can be used for tangles.

De�nition 3.15. Let T be a tangle in a 3-ball B

3

. The tangle T is in an m-bridge position

if T is the union of simultaneously straight m spanning arcs in the interior of B

3

and some

other simple arcs contained in the boundary of B

3

. Every connected component is required

to have at least one spanning arc, so a closed arc on the boundary or a simple arc which is

realized by one arc on the boundary is prohibited. For a tangle T , we de�ne the bridge index

b(T ) as the minimum positive integer m such that there is a tangle � in an m-bridge position

and � is equivalent to T .

If a tangle T is in a 3-sphere S

3

, (in this case, T is a link) then we take a 3-ball B

3

in C

which contains T and de�ne its bridge index with respect to B

3

.
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A straight spanning arc has the bridge index 1 and a set of simultaneously straight t

spanning arcs has the bridge index t. It is easy to see that this de�nition is the same as

De�nition 3.13 if the tangle happens to be a knot, so we will use this de�nition for bridge

index from now on.

The key proposition is the following, a kind of subadditivity of the bridge index.

Proposition 3.16. Let C be a 3-ball (respectively, 3-sphere) and C

1

and C

2

be 3-balls such

that C = C

1

[ C

2

and that C

1

\ C

2

is a 2-ball (respectively, 2-sphere). Let T be a tangle of

C, T

1

the intersection T \C

1

, and T

2

the topological closure of T �T

1

. (Hence T

1

and T

2

are

tangles of C

1

and C

2

, respectively.) Then we have

b(T ) � b(T

1

) + b(T

2

):

Proof. Consider �rst the case when C is a 3-sphere. It is possible to choose a 3-ball C

0

� C

such that T is contained in C

0

, C

0

i

= C

0

\C

i

is a 3-ball for i = 1; 2, the tangle T

i

is contained

in C

0

i

for i = 1; 2 and C

0

1

\ C

0

2

is a 2-ball in C

1

\ C

2

. Now when replacing C, C

1

, C

2

by C

0

,

C

0

1

, C

0

2

the bridge indices of T , T

1

and T

2

do not change. Hence we can assume that C is a

3-ball.

We will construct a tangle � which is equivalent to the tangle T and is in a (b(T

1

)+b(T

2

))-

bridge position. This will prove that b(T ) = b(�) � b(T

1

) + b(T

2

) which is the claim of the

proposition.

The intersection T

1

\ T

2

is a set P of points fp

1

; p

2

; : : : ; p

t

g in C

1

\ C

2

. Using some

elementary deformations, we can assume that all the points of P are lying on the boundary

of the disc C

1

\ C

2

.

In both balls, we optimize the positions of tangles to achieve the minimum number of

the spanning arcs in both embeddings, i.e., we deform the tangle T

i

by some sequence of

elementary moves into �

i

such that �

i

is in a b(T

i

)-bridge position in C

i

, for i = 1; 2. Without

loss of generality, we can assume that the endpoints in �

i

are not lying in C

1

\C

2

. Let p

0

ij

be

the endpoint of �

i

corresponding to the point p

j

of T

i

. Then we connect p

j

and p

0

ij

by an arc

on the boundary of C

i

(i = 1; 2) such that � = �

1

[ �

2

[ fp

0

1j

p

j

p

0

2j

g is equivalent to T . That

such connection is possible can be easily checked step by step according to the elementary

deformations from T

i

to �

i

.

Now � is a tangle in a (b(T

1

) + b(T

2

))-bridge position. Moreover � is equivalent to T thus

proving the desired inequality.
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We remark that the requirement in De�nition 3.15 that every connected component must

have at least one spanning arc is unavoidable in the proof of this proposition. Without it

there may be cases that a spanning arc � in �

i

should be realized by one simple arc on the

boundary but an arc p

0

ij

p

j

should cross the arc, making the construction in the proof, thus

the statement, fail.

T

T

2

T

1

In this �gure, b(T

1

) = 1, b(T

2

) = 2, and b(T ) = 2, satisfying the subadditivity. If we do not

require that every component has at least one spanning arc, then the bridge indices of T

1

and

T

2

become 0 and that of T becomes 1, not satisfying the subadditivity.
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3.6 Bridge index of knots and tangles (II)

This section present some other ways to de�ne the bridge index, but this is an additional

section which has no further use in this thesis. So the reader can skip this section, but the

materials in this section may help the reader imagine what is the bridge index and why the

subadditivity of Proposition 3.16 should hold.

In this section, we assume that knots and tangles are embedded in a 3-ball.

Another de�nition of the bridge index is by counting the local maxima in a projection of

a knot into a plane (see for example Livingston [59]). Here, we mean a projection of a knot

or a tangle the projection of a 3-cube onto a plane, where the cube is an image f(B

3

) of the

3-ball in which the knot or tangle is embedded, where f is a homeomorphism. (The term

\projection of a tangle" indicates the composite of f and the projection.)

projection

homeomorphism

function

height

Here, if we choose another homeomorphism f

0

from B

3

to the same cube, then we get another

projection. In the projection, we take a height function h along one of the edge of the square,

and a local maximum of a tangle T is such a point p (in B

3

) that p has a small neighborhood

N in which h(p) � h(x) for all x 2 T \N . (But we do not say the endpoints of spanning arcs

of tangles to be local maxima because they have only half-neighborhoods.)

Using this projection, the bridge index of a knot is de�ned as the minimum of the number

of the local maxima of the knot in a projection, where the projection ranges over all the

possible choices of the homeomorphism f .

An extension we propose for tangles from this version is the following:

De�nition 3.17. The bridge index b

0

(T ) for a tangle T is

b

0

(T ) = min#flocal maxima of Tg+#fspanning arcs of Tg;

where min is taken over all possible projections.

We have one more version, in the same spirit as above, as follows:
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De�nition 3.18. The bridge index b

00

(T ) for a tangle T is

b

00

(T ) = min#flocal maxima of Tg;

where min is taken over all possible projections in which all the endpoints of the spanning

arcs of T lies on the bottom line.

The following two propositions show that the three di�erent de�nitions of the bridge index

are equivalent.

Proposition 3.19. b

0

(T ) = b

00

(T ) for any tangle T .

Proof. [ b

0

(T ) � b

00

(T ) ]

Let � be a projection with all endpoints on the bottom line. Let �� be a projection,

which reverses the height function of �. If the number of local maxima of T in � is

b

00

(T ), i.e., � achieves the minimum number of local maxima, then the number of local

maxima of T in �� is b

00

(T )�#fspanning arcs of Tg. This follows from the fact that

in �, #flocal maximag = #flocal minimag for closed cycles and #flocal maximag =

#flocal minimag � 1 for spanning arcs. The inequality follows.

[ b

00

(T ) � b

0

(T ) ]

Let � be a projection of T with m(T ) local maxima. We assume that � achieves the

minimum, i.e., b

0

(T ) = m(T ) + #fspanning arcs of Tg. We make another projection

�

0

of T from � as indicated in the following �gure. (Extend the spanning arcs in the

projection, without increasing the number of local maxima, such that the endpoints of

spanning arcs ends in the upper edge of the big square.)

Now ��

0

is a projection satisfying the condition that all the endpoints of spanning arcs

lie on the bottom edge, and the number of local maxima of T with the height function

��

0

equals to m(T ) + #fspanning arcs of Tg = b

0

(T ), and the inequality follows.
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Proposition 3.20. b

00

(T ) = b(T ) for any tangle T .

Proof. We use the following fact: if a projection of a tangle consists of a set of arcs (with-

out closed cycles, can be intersecting) such that each of the arc has both endpoints at the

bottom and has only one local maximum, then there is an embedding of the tangle made of

simultaneously straight spanning arcs. And also a set of simultaneously straight spanning

arcs can be embedded into a plane without intersection. In the reverse direction, a set of arcs

embedded in a plane can be embedded as a set of simultaneously straight spanning arcs, and

a set of simultaneously straight spanning arcs has a projection with endpoints at the bottom

in which each arc has only one local maximum.

[ b

00

(T ) � b(T ) ]

For a given projection � of T whose endpoints are at the bottom, we can modify the

projection such that it has a horizontal cutting plane so that the tangle above the plane

consists of only arcs with one local maximum, and below the plane consists of only arcs

with one (or zero) local minimum, as the following �gure.

From this, we can construct an embedding of T into a 3-ball which is in a b

00

(T )-bridge

position. To do this, we just embed the upper part in the interior of the ball as a set of

simultaneously straight spanning arcs, and the lower part on the boundary. (Note that

this is always possible. This is because for the embedding of the upper part into the

ball, the places of endpoints on the boundary of the ball can be chosen arbitrary.) In

this embedding, the number of spanning arcs equals to the number of local maxima in

the original projection.

[ b(T ) � b

00

(T ) ]

From an embedding of T in a b(T )-bridge position, write a projection as the �gure

above such that the upper part is the set of spanning arcs in the interior of the ball and

the lower part is the set of arcs on the boundary of the ball. Then the number of local

maxima in the projection is b(T ).
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The way of de�ning the bridge index by b

00

provides a di�erent proof of Proposition 3.16

as the following �gure indicates.
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3.7 Non-constructibility and the bridge index

Proposition 3.16 provides the promised theorem as follows. Instead of showing for simplicial

balls or spheres, we show here for polytopal balls or spheres. This change is not radical (in

fact, it is easy to see that Theorems shown in Section 3.2 and 3.3 holds for polytopal cases

without any change of discussion), but we state the theorem for polytopal balls and spheres

in order to use it for Hetyei's conjecture below.

Theorem 3.21. Let C be a 3-dimensional polytopal ball or sphere which is constructible.

Let T be a tangle contained in the 1-skeleton of the polytopal complex C. Then we have the

inequality

b(T ) � e(T );

where b(T ) is the bridge index of T and e(T ) is the number of edges of T .

Proof. The proof is by induction on C. The induction basis is when C is a 3-dimensional

polytope. Then T is a disjoint union of straight spanning arcs and unknots. Let k be the

number of components of T . Then b(T ) = k � e(T ), and the induction base is complete.

The induction step is as follows. If C is not a simplex, we have two 3-dimensional com-

plexes C

1

and C

2

satisfying the condition (ii) of De�nition 2.11, and from Proposition 2.16

they are 3-balls and C

1

\ C

2

is a 2-ball or sphere. Let T

1

= T \ C

1

and T

2

= T � T

1

. By

Proposition 3.16 and the induction hypothesis we obtain

b(T ) � b(T

1

) + b(T

2

) � e(T

1

) + e(T

2

) = e(T ):

This completes the induction.

Corollary 3.22. Let C be a 3-dimensional polytopal ball or sphere. Assume that the 1-

skeleton of the complex C contains a knot K such that

e(K) � b(K)� 1:

Then the polytopal complex C is non-constructible.

One consequence from Corollary 3.22 is the following theorem.

Theorem 3.23. Given a non-negative integer n there exists a triangulation C of a 3-

dimensional sphere or ball such that the n-fold barycentric subdivision sd

n

(C) is non-

constructible.

Proof. Choose a knot K with bridge index larger than or equal to 3 � 2

n

+ 1. Let C be

a triangulation of a 3-dimensional sphere or ball that contains K on three edges. Such

a triangulation can be constructed from Proposition 3.7. Because taking the barycentric
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subdivision divides each edge into two edges, the knot K contained in sd

n

(C) consists of 3 �2

n

edges. From Corollary 3.22, it follows now that the complex sd

n

(C) is non-constructible.

For the case of 3-balls, we can reduce the complexity. For this, we use Proposition 3.1 to

make a triangulated 3-ball with a spanning arc made of one edge, then apply Theorem 3.21.

The spanning arc in sd

n

(C) is made of 2

n

edges, so if the knotted spanning arc has the bridge

index at least 2

n

+ 1, then the sd

n

(C) is not constructible.

Similar statement for shellability is already shown in Kearton-Lickorish [52] or Lickor-

ish [57]. In fact, the proof of Theorem 3.10 in Lickorish [57] showed the following strong

statement.

Theorem 3.10

0

. If a triangulated 3-sphere has a knot made of e edges such that the funda-

mental group of the knot complement has no less than e + 1, then any removal of one facet

gives a 3-ball which is not simplicially collapsible. Thus the triangulation is not shellable.

But the results for simplicial collapsibility can not be used for constructibility because it

is not known whether constructible simplicial balls are always simplicially collapsible or not.

One more application of Corollary 3.22 is the following conjecture of G�abor Hetyei.

Conjecture 3.24 (Hetyei [46, 47]). There exist non-shellable triangulations of d-balls

whose cubical barycentric subdivision is again non-shellable.

Here, the cubical barycentric subdivision of a simplicial complex C is the abstract cubical

complex �(C) such that

(i) the set of vertices of �(C) is the set of non-empty faces of C, and

(ii) a face of the cubical complex �(C) is an interval of the face poset of C.

It is straightforward to see that the cubical barycentric subdivision �(C) is a cubical complex

and that �(C) is a subdivision of the simplicial complex C. Hence the simplicial complex C

and its cubical barycentric subdivision �(C) have the same geometrical realization. For an

example of cubical barycentric subdivision, see the following �gure.
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Now we can give the a�rmative answer to Hetyei's Conjecture 3.24 from Corollary 3.22.

Before this, Margaret Readdy already settled this conjecture for dimensions d � 4: every

suspension of a non-shellable sphere satis�es the condition. So the newly derived fact is
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the remained three-dimensional case. Our solution is also given in a stronger form, for con-

structibility. In the following proof, the last part for the cases of d � 4 is essentially the same

as her argument.

Theorem 3.25. Let d be greater than or equal to 3. Then there exists a d-dimensional sim-

plicial PL-sphere C

d

such that the cubical barycentric subdivision �(C

d

) is non-constructible.

Proof. Consider �rst the case when d is equal to 3. Choose a knot K with bridge index larger

than or equal to 7 and let C

3

be a simplicial complex that contains the knot K on three edges.

Observe that the complex C

3

is non-constructible. By the same argument as in Theorem 3.23,

the cubical complex �(C

3

) is non-constructible.

The remaining part of the proof is by induction on dimension. Let C

d

be the suspension

of C

d�1

, that is, C

d

= C

d�1

[ (u � C

d�1

) [ (v � C

d�1

), where u and v are newly introduced

vertices. Then we have that link

C

d

(v) = C

d�1

, and hence C

d

is non-constructible. Observe

that link

�(C

d

)

(v) = C

d�1

, and hence �(C

d

) is also non-constructible from Proposition 2.14.

Remark. We can also prove Hetyei's conjecture directly from Lickorish's Theorem 3.10

0

for

non-shellable spheres as follows. Let C be a 3-sphere which has a knot K consisting of

three edges. Let us take stellar subdivisions by all the 3-faces of �(C) and then take stellar

subdivisions by all the 2-faces of �(C) to get a subdivision C

0

of �(C). Then we can show

that C

0

is shellable if �(C) is shellable. Now C

0

and �(C) has the same 1-skeleton, especially

K consists of 6 edges in C

0

. From Theorem 3.10

0

, if the knot complement of a knot made of

e edges has no representation by less than e generators in triangulated S

3

, the triangulation

is not shellable. So we conclude that �(C) is not shellable if the minimum representation of

the knot complement of K needs 7 generators.

But this method can not be used for constructibility.
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3.8 Vertex decomposability, shellability and the bridge index

The results shown from Sections 3.2 to 3.7 has an analogue for vertex decomposability, which

we will show in this section. (The �rst half of this section is from Hachimori and Ziegler [45]

and the latter part is from Ehrenborg and Hachimori [36], also analogous to the previous

sections.)

Theorem 3.26. If a 3-ball C has a knotted spanning arc consisting of at most 3 edges, then

C is not vertex decomposable.

Proof. We show that every knotted spanning arc consisting of at most 3 edges are not knotted

in a vertex decomposable 3-ball C.

First we observe that if x is a shedding vertex of a vertex decomposable d-ball, then x lies

in the boundary. Furthermore, every vertex y adjacent to x is either in the interior of C, or

the edge xy is contained in the boundary of C. This is because the deletion dl

C

x must be a

3-ball, and the link of x is a 2-ball.

Again we use induction on the number of facets. If the spanning arc is made of 1 or 2

edges, then it is not knotted by Theorem 3.4. So we can assume that the spanning arc is

made of 3 edges, where the �rst and last edge do not lie in the boundary of the ball. Thus if

the arc is ab-bc-cd, the edges ab and cd lie in the interior of C. In particular, b and c are not

shedding vertices.

The vertex a also cannot be a shedding vertex: otherwise bc-cd is a 2-edge knotted span-

ning arc in the 3-ball dl

C

a (to verify this we use an argument as in the proof of Theorem 3.4),

and thus dl

C

a is not constructible (not even shellable) by Theorem 3.4. Similarly d cannot

be a shedding vertex.

Thus x must be taken di�erent from fa; b; c; dg. In this case, however, dl

C

x has a knotted

spanning arc with 3 edges and has a smaller number of facets than C, contradicting the

induction hypothesis.

For example, we can observe (directly from the �gure) that the shellable 3-ball shown in

Example 3.6 is not vertex decomposable.

As same as Theorem 3.4, the number \3" of edges in the knotted spanning arc is best

possible, because there are vertex decomposable 3-balls that have a knotted spanning arc

with 4 edges.

Example 3.27. (A vertex decomposable 3-ball with a knotted spanning arc made of 4 edges.)

In the �gure of Example 3.6, C

0

= C

1

[(v�(gray faces)), where v is a newly introduced vertex,

has a knotted spanning arc ab-bv-vc-cd with 4 edges. This 3-ball C

0

is vertex decomposable.

(One can take v as the �rst shedding vertex.)
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As in the case of constructibility in Section 3.3, from Theorem 3.26 we get a result for

knots in vertex decomposable 3-spheres resp. 3-balls.

Theorem 3.28. If a 3-sphere or a 3-ball C has a knot which consists of at most 5 edges,

then C is not vertex decomposable.

Proof. We use Theorem 3.26 and induction on the number of facets.

If C is a simplex, the statement obviously holds. Let C be vertex decomposable, let x be a

shedding vertex of C and let � be a knot with at most 5 edges. If x is a vertex of �, then dl

C

x

has a knotted spanning arc with at most 3 edges, contradicting to Theorem 3.26. Otherwise

dl

C

x has a knot � with at most 5 edges, contradicting to the induction hypothesis.

The number of edges in this theorem is again best possible, as is shown in the following

example.

Example 3.29. (A vertex decomposable 3-ball and 3-sphere with a knot consisting of

6 edges.) In the �gure of Example 3.11, C

0

2

= C

1

[ (v � (slashed faces)) [ (w � (gray faces),

where v and w are newly introduced vertices, has a knot ab-bv-vc-cd-dw-wa with 6 edges, and

this 3-ball is vertex decomposable. From this 3-ball, we can construct a vertex decomposable

3-sphere by taking a cone over its boundary, namely, C

0

= C

0

2

[ (u � @C

0

2

).

For the bridge index version, we provide improved bounds for both of shellability and

vertex decomposability cases.

What we use is the following lemma on the bridge index of tangles.

Lemma 3.30. Let C be a 3-ball and T be a tangle in C, and let C

1

[C

2

= C and T

1

[T

2

= T

be the decomposition assumed in Proposition 3.16. If b(T

2

) = 1, then

(i) if T

1

\ T

2

consists of two points, then b(T ) � b(T

1

).

(ii) if T

1

\ T

2

is one point, then b(T ) = b(T

1

).

(iii) if T

1

\ T

2

= ;, then b(T ) = b(T

1

) + 1.

The proof is almost trivial, so we omit describing it.
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In the case of shellable simplicial complexes, we have the following theorem.

Theorem 3.31. Let C be a 3-dimensional simplicial ball or sphere which is shellable. Let K

be a knot contained in the 1-skeleton of the simplicial complex C. Then we have the inequality

2 � b(K) � e(K):

Proof. We may assume that K is not the unknot.

If C is shellable, there is a shelling F

1

; F

2

; : : : ; F

n

such that (F

1

[� � �[F

j�1

)\F

j

is a shellable

2-complex on @F

j

. Especially, F

1

[ � � � [ F

j�1

and F

j

are 3-balls and (F

1

[ � � � [ F

j�1

)\ F

j

is

a 2-ball, for 2 � j � n.

Let C

(n+1)

1

= C, C

(i)

1

= F

1

[� � �[F

i�1

, and C

(i)

2

= F

i

. Let T

(n+1)

1

= K, T

(i)

1

= T

(i+1)

1

\C

(i)

1

,

and T

(i)

2

= T

(i+1)

1

� T

(i)

1

. (T

(1)

1

= ;.) Note that C

(i+1)

1

= C

(i)

1

[ C

(i)

2

and T

(i+1)

1

= T

(i)

1

[ T

(i)

2

are decompositions described in Proposition 3.16.

Because C

(i)

2

is a 3-simplex and C

(i)

1

\ C

(i)

2

is a pure 2-subcomplex on its boundary, the

possible cases are the following.

(1) T

(i)

2

in C

(i)

2

is an arc made of two edges and T

(i)

1

\ T

(i)

2

consists of two points.

(2) T

(i)

2

in C

(i)

2

is an arc made of two edges and T

(i)

1

\ T

(i)

2

is one point.

(3) T

(i)

2

in C

(i)

2

is an arc made of two edges and T

(i)

1

\ T

(i)

2

is empty.

(4) T

(i)

2

in C

(i)

2

is an edge and T

(i)

1

\ T

(i)

2

consists of two points.

(5) T

(i)

2

in C

(i)

2

is an edge and T

(i)

1

\ T

(i)

2

is one point.

(6) T

(i)

2

in C

(i)

2

is an edge and T

(i)

1

\ T

(i)

2

is empty.

(7) T

(i)

2

in C

(i)

2

is empty.

(8) T

(i)

2

in C

(i)

2

is made of two disjoint edges. (This only occurs when i = 1.)

(9) T

(i)

2

in C

(i)

2

is an arc made of three edges. (This only occurs when i = 1.)

Ranging i from 1 to n, we denote by n

k

the number of i's such that i-th step is of type (k).

For the types from (1) to (6), because T

(i)

2

is a trivial spanning arc, b(T

(i)

2

) = 1. So

Lemma 3.30 shows that the types (3) and (6) increase the bridge index by one and others

do not, when increasing the index i from 1 to n. In the cases (8) and (9), they increase the

bridge index by two and one, respectively. Thus we have

b(K) � n

3

+ n

6

+ 2 � n

8

+ n

9

:
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On the other hand, the types (1) and (4) decrease the Euler characteristic of the tangle by

one, the types (3), (6) and (9) increase by one, the type (8) increase by two, and others make

no change. Thus we have

n

1

+ n

4

= n

3

+ n

6

+ 2 � n

8

+ n

9

;

because both T

(n+1)

1

= K and T

(1)

1

= ; have the Euler characteristic 0.

Hence we have

e(K) = 2 � (n

1

+ n

2

+ n

3

) + n

4

+ n

5

+ n

6

+ 2 � n

8

+ 3 � n

9

� n

1

+ n

3

+ n

4

+ n

6

+ 2 � n

8

+ n

9

= 2 � (n

3

+ n

6

+ 2 � n

8

+ n

9

)

� 2 � b(K):

(Note that the proof of the following theorem is only valid for the case of simplicial complexes,

not for general polytopal complexes. For the polytopal cases, see Theorem 3.31

0

in page 74.)

We can show the following theorem for the case of vertex decomposability in a similar

way.

Theorem 3.32. Let C be a 3-dimensional simplicial ball or sphere which is vertex decom-

posable. Let K be a knot contained in the 1-skeleton of the simplicial complex C. Then we

have the inequality

3 � b(K) � e(K):

Proof. If C is vertex decomposable, there is a sequence of shedding vertices x

n

; x

n�1

; : : : ; x

1

of C. Let C

(n+1)

1

= C, C

(i)

1

= dl

C

(i+1)

1

x

i

, and C

(i)

2

= x

i

� link

C

(i+1)

1

(x

i

). Let T

(n+1)

1

= K,

T

(i)

1

= T

(i+1)

1

\ C

(i)

1

, and T

(i)

2

= T

(i+1)

1

� T

(i)

1

. (T

(1)

1

= ;.) Observe that C

(i+1)

1

= C

(i)

1

[ C

(i)

2

and T

(i+1)

1

= T

(i)

1

[ T

(i)

2

are decompositions described in Proposition 3.16.

By considering the fact that C

(i)

2

is a star with the center vertex x

i

, we observe that there

are types of the decomposition as described in the proof of Theorem 3.31. But this time, the

type (4) does not occur, that is, n

4

= 0.

For the cases from (1) to (6), because C

(i)

2

is a vertex decomposable 3-ball, Theorem 3.26

shows that T

(i)

2

is a trivial spanning arc, hence b(T

(i)

2

) = 1. So Lemma 3.30 shows that types

(3) and (6) increase the bridge index by one and others do not, when increasing i from 1 to n.

For the cases (8) and (9), they increase the bridge index by two and one, respectively. Thus

we have

b(K) � n

3

+ n

6

+ 2 � n

8

+ n

9

:
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On the other hand, the type (1) decreases the Euler characteristic of the tangle by one, the

types (3), (6) and (9) increase by one, the type (8) increase by two, and others make no

change. Thus we have

n

1

= n

3

+ n

6

+ 2 � n

8

+ n

9

;

because both T

(n+1)

1

= K and T

(1)

1

= ; have the Euler characteristic 0.

Hence we have

e(K) = 2 � (n

1

+ n

2

+ n

3

) + 1 � (n

5

+ n

6

) + 2 � n

8

+ 3 � n

9

� 2 � n

1

+ n

3

+ n

6

+ 2 � n

8

+ n

9

= 3 � (n

3

+ n

6

+ 2 � n

8

+ n

9

)

� b(K):
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Theorem 3.31 is stated for simplicial decompositions, not for polytopal cases. This is

because Lemma 3.30 allows us to add only one arc in one step. To overcome this restriction

to state the theorem for polytopal decompositions, some generalization of the lemma is needed.

The key for such a generalization is a strengthening of simultaneous straightness, introduced

by Richard Ehrenborg in our joint work. The de�nition is as follows: Let a set of spanning

arcs is in a 3-ball C and B is a 2-ball in the boundary @C of C. Then the spanning arcs

are simultaneously straight with respect to B if the arcs have mutually disjoint semispanning

discs each of which avoids the interior of B.

The following lemma is a generalization of Lemma 3.30.

Lemma 3.30

0

. Let C = C

1

[ C

2

and T = T

1

[ T

2

be the decomposition of a 3-ball and a

tangle as in Proposition 3.16. Moreover we assume that T

2

is simultaneously straight with

respect to C

1

\ C

2

. Assume that T

2

have

� number a of arcs each of which intersects with T

1

in two points,

� number b of arcs each of which intersects with T

1

in one point, and

� number c of arcs each of which intersects with T

1

in zero points.

If T

2

is simultaneously straight with respect to C

1

\ C

2

, then we have

b(T ) � b(T

1

) + c:

Proof. Because T

2

is simultaneously straight with respect to C

1

\C

2

, the arcs of T

2

have mu-

tually disjoint semispanning discs avoiding the interior of C

1

\C

2

. Along these semispanning

discs, we can move the arcs onto @C

2

nC

1

by elementary moves. Thus we can assume without

loss of generality that the arcs of T

2

are all on the boundary of C.

Now take a tubular neighborhood N(k

i

) for each arc k

i

of T

2

. If we take the neighborhoods

small enough, then they are mutually disjoint and also disjoint from the arcs of T

1

. De�ne

C

�

= C �

S

N(k

i

) and consider to add N(k

i

) one by one to C

�

. It is easy to observe that

each step satis�es the condition of Lemma 3.30, and the inequality follows.

Note that this lemma is not valid for the case T

2

is just simultaneously straight. For this,

see the following �gure.

T

2

T

1

In this �gure, T

2

is simultaneously straight, but it is not simultaneously straight with respect

to C

1

\ C

2

. In this example, 1 = b(T

1

) < b(T ) = 2.
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Now the generalized theorem.

Theorem 3.31

0

. Let C be a 3-dimensional polytopal ball or sphere which is shellable. Let K

be a knot contained in the 1-skeleton of the simplicial complex C. Then we have the inequality

2 � b(K) � e(K):

Proof. We may assume that K is not the unknot. Since C is shellable there is an ordering

of the facets F

1

; F

2

; : : : ; F

n

(i.e., a shelling) such that (F

1

[ � � � [ F

j�1

) \ F

j

is a shellable

2-complex on @F

j

.

Set C

(i)

1

, C

(i)

2

, T

(i)

1

and T

(i)

2

as in the proof of Theorem 3.31. Observe that T

(i)

2

is in

@C

(i)

2

nC

(i)

1

. This assures that T

(i)

2

is simultaneously straight with respect to C

(i)

1

\C

(i)

2

, that

is, the condition of Lemma 3.30

0

is satis�ed for each i. Let a

i

, b

i

and c

i

be the number of arcs

of T

(i)

2

described in Lemma 3.30

0

. Then the lemma shows that

b(T

(i+1)

1

) � b(T

(i)

1

) + c

i

:

Because b(T

(1)

1

) = b(;) = 0, we have

b(K) �

n

X

i=1

c

i

:

On the other hand, since the Euler characteristic of the tangle increases by c

i

�a

i

as i increases,

and both T

(1)

1

= ; and T

(n+1)

1

= K have Euler characteristic 0, we have

n

X

i=1

(c

i

� a

i

) = 0:

Hence we have

e(K) �

n

X

i=1

(a

i

+ b

i

+ c

i

) �

n

X

i=1

(a

i

+ c

i

) = 2 �

n

X

i=1

c

i

� 2 � b(K):
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3.9 Compatible and weakly compatible knots

The method we used for Theorem 3.21 can be used for the dual setting, in the same setting

as Armentrout's paper [2]. What he discussed is the relation between shellability of a simple

cell partitioning and knots contained in it in general position, i.e., knots intersecting with

only 3- and 2-cells and the intersection with 2-cells are disjoint union of points. To describe

his results, we need the de�nitions of compatibility of knots.

De�nition 3.33. A knot K is compatible with a cell partitioning C if each 3-cell in C inter-

sects with K by an empty set or one segment.

A knot K is weakly compatible with C if each 3-cell in C intersects with K by an empty

set or a simultaneously straight spanning arcs of the cell.

Armentrout's results are the following relations between the bridge index of the knot

K contained in a simple cell partitioning C in a general position and the number p(K) of

segments which K is decomposed into by the partitioning C.

� If K is compatible with C and b(K) > 2p(K), then C is not shellable. (Theorem 1 of

[2])

� If K is weakly compatible with C and b(K) > p(K), then C is not shellable. (Theorem 3

of [2])

The following theorem extends the latter one into constructibility. The proof is essentially

the same as Theorem 3.21.

(Constructibility of cell partitioning can be de�ned that C is constructible if (i) C has only

one 3-cell or (ii) there are two constructible parts C

1

and C

2

such that C

1

\ C

2

is a (d� 1)-

dimensional ball or sphere.)

Theorem 3.34. If C is a constructible (not necessarily simple)cell partitioning of a 3-sphere

or a 3-ball and C contains a tangle T which is weakly compatible with C then

b(T ) � p(T ):

Proof. The proof is by induction on the number of facets of C. If C has only one 3-cell, then

T is a set of simultaneously straight spanning arcs. In this case b(T ) and p(T ) are both equal

to the number of spanning arcs of T . Hence the induction base is complete.

The induction step is the same as Theorem 3.21. Because C is constructible, we have a

partition of C into C

1

and C

2

which are constructible cell partitionings, both are 3-balls and
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their intersection is a 2-ball or sphere. Let T

1

= T \C

1

and T

2

= T � T

1

. By Proposition 3.16

and the induction hypothesis we obtain

b(T ) � b(T

1

) + b(T

2

) � p(T

1

) + p(T

2

) = p(T ):

This completes the induction.

Corollary 3.35. If C is a constructible cell partitioning of a 3-ball or a 3-sphere and C

contains a knot K which is weakly compatible with C then

b(K) � p(K):

Thus, if b(K) > p(K), then C is not constructible.

Armentrout's Theorem 3 in Armentrout [2] was shown as a consequence of his Theorem 1.

His Theorem 1 can be reproved by a very simple proof using a similar method to Theorem 3.31,

which is di�erent from his original proof.

Theorem 3.36. (Theorem 1 of Armentrout [2])

If C is a shellable cell partitioning of a 3-dimensional ball or sphere and C contains a knot K

which is weakly compatible with C then

b(K) � 2 � p(K):

Proof. As same as in the proof of Theorem 3.31, there is an ordering of the facets F

1

; F

2

; : : : ; F

n

such that (F

1

[ � � � [F

j�1

)\F

j

is a shellable 2-complex on @F

j

, and we de�ne C

(i)

1

, C

(i)

2

, T

(i)

1

and T

(i)

2

in the same way.

In this case, the possible case of C

(i)

2

are classi�ed as follows.

(1) T

(i)

2

in C

(i)

2

is an arc and T

(i)

1

\ T

(i)

2

consists of two points.

(2) T

(i)

2

in C

(i)

2

is an arc and T

(i)

1

\ T

(i)

2

is one point.

(3) T

(i)

2

in C

(i)

2

is an arc and T

(i)

1

\ T

(i)

2

is empty.

(4) T

(i)

1

\ T

(i)

2

is empty.

We denote by n

k

the number of i's such that i-th step is of the type (k).

From the condition of compatibility of K, T

(i)

2

in C

(i)

2

in types (1), (2) and (3) is a trivial

spanning arc, so b(T

(i)

2

) = 1. Hence Lemma 3.30 shows that type (3) decreases the bridge

index by 1 and others do not. Thus we have

b(K) � n

3

:
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On the other hand, the calculation of Euler characteristic shows that

n

1

= n

3

:

Hence we have

p(K) = n

1

+ n

2

+ n

3

� n

1

+ n

3

� 2 � n

3

� 2 � b(K):
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3.10 The hierarchy of combinatorial decomposition properties

and the conjectured bound

Upto the last section we have exhibited the following hierarchy of combinatorial decomposition

properties according to the existence of knots of small size.

Theorem 3.37. A 3-ball with a knotted spanning arc consisting of

(

at most 2 edges is not constructible,

3 edges can be shellable, but not vertex decomposable,

4 edges can be vertex decomposable.

A 3-sphere or 3-ball with a knot consisting of

(

3 edges is not constructible,

4 or 5 edges can be shellable, but not vertex decomposable,

6 edges can be vertex decomposable.

Theorem 3.38. A 3-sphere or 3-ball with a knot K consisting of

(

at most b(K)� 1 edges is not constructible,

at most 2 � b(K)� 1 edges is not shellable,

at most 3 � b(K)� 1 edges is not vertex decomposable.

For Theorem 3.38, a bound for the number of edges of a knot possibly contained in a

complex with combinatorial decomposition properties is the following, which was �rst pointed

out by G�unter M. Ziegler.

Proposition 3.39. There are shellable 3-balls and 3-spheres which has a knot K with e(K) =

2 � b(K), and vertex decomposable 3-balls and 3-spheres which has a knot K

0

with e(K

0

) =

3 � b(K

0

).

Proof. The construction is the same as Examples 3.6 and 3.11. In fact, the examples shown

there are knotted spanning arcs and knots of bridge index 2, in a 2-bridge position. To make

higher bridge index examples, we have only to prepare a big enough pile of cubes with height

1, then chose k vertical edges and join their endpoints by suitable corridors of width 1 on

the boundary of the pile, and lastly add edges along the corridors using the same technique

used in Example 3.11 or 3.29. 3-spheres are derived by making a cone over the boundary as

before.

Thus the case of shellability and vertex decomposability achieve the sharp bound.

In discussions among G�unter M. Ziegler, Richard Ehrenborg and I, we conjectured the

above bound for shellability is the sharp bound also for the constructibility case.
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Conjecture 3.40.

� If a 3-ball or a 3-sphere has a knots K with e(K) � 2 � b(K) � 1, then it is not

constructible.

The case of b(K) = 2 is already solved by Theorems 3.8.
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Chapter 4

Deciding constructibility

| the case of 3-balls

The decision problem of combinatorial decomposition properties are one of the challenging

problems in the study of this �eld. The importance of this problem is mentioned in the

review paper [32] of Danaraj and Klee, who showed the linear-time solvability of shellability

of 2-pseudomanifolds in Danaraj and Klee [33]. Except for their initial study, almost nothing

is done for this algorithmic problem. Some exceptions are solvability of Cohen-Macaulayness

by Garsia [40] and NP-ness of partitionability by Noble [72].

In this chapter, we try the decision problem of constructibility. Because the case of 2-

pseudomanifolds are already solved (constructibility of 2-pseudomanifolds is equivalent to

shellability), our interest is in the case of 3-pseudomanifolds.

In this chapter, our stand point is that the complexity of algorithms for simplicial com-

plexes should be measured by the order of #ffacetsg � log(#fverticesg). This is because

simplicial complexes can be represented by a list of facets such as

1 2 3 4 5

1 3 4 5 6

1 4 5 8 11

: : : : : :

where each number indicates the index of a vertex and each row indicates that there is a

facet with the vertices listed in the row. In this example, there are facets with vertices

f1; 2; 3; 4; 5g, f1; 3; 4; 5; 6g, f1; 4; 5; 8; 11g, and so on. This way of presenting the data is the

smallest one which can be used for general simplicial complexes, and the size of bits to be

used is O(#facets� log(#vertices)).
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Section 4.1 gives a result which shows that the decision problem of 3-spheres is reduced

to the problem of 3-balls. Thus we consider the problem of 3-balls after Section 4.2. In

Section 4.2 we introduce a notion of reduced 3-balls which is the key concept in the following

discussion, and Section 4.3 gives a characterization of constructibility in the case of 3-balls

without interior vertices. An application of this result is given in Section 4.4 and Bing's 3-

ball, formerly known to be non-shellable, is shown to be non-constructible. Section 4.5 discuss

how to extend the result of Section 4.3, and give a generalization of the characterization of

constructibility allowing the existence of upto two interior vertices. In Section 4.6, however,

we give an example which shows that the same extension can not be made for more than

two interior vertices. In the last Section 4.7 we give an algorithm for the decision problem

of constructibility of 3-balls with at most two interior vertices using the result of Section 4.5.

The algorithm runs in O(#facets) time and this shows the polynomial time solvability of

constructibility in this special case.
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4.1 3-balls and 3-spheres

Our �rst result shown in this chapter is that the decision problem of constructibility of 3-

spheres is reduced to that of constructibility of 3-balls.

Theorem 4.1. Let C be a triangulation of a 3-sphere and � any facet of C. Then C is

constructible if and only if the 3-ball C n � is constructible.

Proof. The \if" part is trivial, so we show the \only if" part. Let C be constructible. Then

by de�nition there are two constructible 3-balls C

1

and C

2

such that C

1

[C

2

= C, and C

1

\C

2

is a constructible 2-sphere. We may assume that � is contained in C

2

. If C

2

= �, then we

are done. Otherwise C

2

is the union of two constructible 3-balls C

21

and C

22

that satisfy the

conditions for constructibility. We may assume that C

22

contains �. We de�ne C

0

1

:= C

1

[C

21

and C

0

2

:= C

22

. Then

(i) C

0

2

is a constructible 3-ball by de�nition.

(ii) C

0

1

\ C

0

2

= @C

0

2

= @C

22

is constructible because it is a 2-sphere.

C

1

C

21

C

C

22

�

(iii) C

0

1

= C

1

[ C

21

, where both C

1

and C

21

are constructible 3-balls by de�nition. Their

intersection C

1

\ C

21

= @C

21

n (C

21

\ C

22

) is a constructible 2-ball, since removal of a

2-ball from a 2-sphere always leaves a 2-ball, and all 2-balls are constructible. Thus C

0

1

is a constructible 3-ball.

So C

0

1

and C

0

2

instead of C

1

and C

2

satisfy the de�nition of constructibility. Continuing this

argument, the number of facets of C

2

is reduced until C

2

has only the one facet �, showing

that C n � is constructible.

This theorem is from a joint work with G�unter M. Ziegler [45]. Originally this consisted a

part of the proof of Theorem 3.8 in Section 3.3 until the simpli�ed proof as shown there was

given. The original argument of Theorem 3.8 using Theorem 4.1 is as follows: If a 3-sphere

has a knot made of three edges, we remove a facet which meets with the knot by one edge.

Then we get a 3-ball with a knotted spanning arc made of two edges, which implies that the

3-ball is not constructible from Theorem 3.4. The non-constructibility of the ball implies that

the 3-sphere is not constructible from Theorem 4.1. For the case of a 3-ball containing the
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knot made of three edges, we make a cone over its boundary to get a 3-sphere with a knot

made of three edges. If the ball is constructible, then the sphere we get is also constructible.

This is a contradiction which completes the proof of Theorem 3.8.

Assume that we have an algorithm to decide the constructibility of 3-balls. If we are given

a 3-sphere, then we remove one facet chosen arbitrary to get a 3-ball. From Theorem 4.1, the

answer for the 3-ball is precisely the answer to the original 3-sphere. The order of the running

time of the algorithm is not changed. So the time complexity of the problem for 3-spheres is

at most that for 3-balls.

As is shown in Proposition 2.16, constructible 3-pseudomanifolds are just 3-balls and 3-

spheres. Now the 3-sphere case is reduced to the 3-ball case, if we want to try to decide

the constructibility of a given 3-pseudomanifold with an information of its topology, what we

need is an e�cient algorithm for the decision problem of constructibility of 3-balls.

Remark. If we know the topology of simplicial complexes a priori, the situation is as above.

But usually to know the topology of a given simplicial complexes is a very di�cult prob-

lem. For example, it is known that the problem to decide whether any two manifolds are

homeomorphic or not is undecidable if the dimension is 4 and higher. (For example, see

Stillwell [88].) Moreover, to decide whether a manifold is a sphere or not is also undecidable

in dimensions starting from 5. (See Volodin, Kuznetsov and Fomenko [91].) The problem to

decide if a triangulated manifold is a 3-ball or not is shown to be decidable by Rubinstein [77]

using normal surface theory (it is written that Haken already had the result before this),

but still the algorithm is far from e�cient and the time complexity is not known. But there

are many cases in which we know a priori that the simplicial complexes are balls or spheres,

for example the data are produced from triangulating balls, spheres, or polytopes. For such

cases, we can use algorithms specialized for balls or spheres without worrying about how to

decide the topology.
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4.2 Reduced balls

From this section, we describe how to decide constructibility of 3-balls and our goal is to

give an algorithm to decide constructibility of a given 3-ball under the condition that the

number of vertices contained in the interior of the ball is at most 2. The algorithm runs in

O(#ffacetsg) time.

Our method relies on the following de�nition of reducedness of balls.

De�nition 4.2. A reduced d-ball C is a d-ball in which every (d�1)-face in the interior

�

C

of

C has more than one (d� 2)-faces in

�

C

. Equivalently, a d-ball is reduced if every (d� 1)-face

in

�

C

has at least (d� 1) of its (d� 2)-faces on the boundary @C of C.

In particular, a reduced 3-ball is a 3-ball in which every 2-face in the interior has at most

1 edge on the boundary.

To see the importance of this concept, consider the following two operations applied for a

given d-ball.

(I) If T is a (d� 1)-face contained in

�

C

and all of its (d� 2)-faces are in @C, then divide the

ball C into two balls C

1

and C

2

by T .

(II) If T is a (d� 1)-face contained in

�

C

and d� 1 of its (d� 2)-faces are in @C, then split

T as the following �gure. (Let us call the resulting ball C

0

.)

(on the boundary)

(on the boundary)(in the interior)
e

3

e

1

e

2

T

For these operations for a 3-ball C, we have the following proposition.

Proposition 4.3. For the two operations above,

(I) C is constructible if and only if both C

1

and C

2

are constructible.

(II) C is constructible if and only if C

0

is constructible.

Proof. Claim (I) is trivial.

[if part of (II)]

Let C

0

be constructible. Then there are two d-balls C

0

1

and C

0

2

satisfying the condition of

De�nition 2.11. Let us divide C into C

1

and C

2

such that C

i

and C

0

i

have the same set of
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facets, for i = 1; 2. If C

1

\C

2

does not contain T , then one of C

1

and C

2

contains T and the

constructibility of C can be shown by induction on the size of the ball. If C

1

\ C

2

contains

T , then C

1

\C

2

= (C

0

1

\C

0

2

)[ T is constructible by (I) for dimension d� 1, which shows the

constructibility of C.

[only if part of (II)]

Let C be constructible. Then there are two d-balls C

1

and C

2

satisfying the condition of

De�nition 2.11. There are 3 cases.

� C

1

\ C

2

intersect with T by a face with dimension less than (d� 1) (including ;).

In this case, one of C

1

and C

2

contains T such that only one (d� 1)-face of T is in the

interior and the rest are on the boundary, and the constructibility of C

0

is shown by

induction on the size of the ball.

� C

1

\ C

2

contains T .

If we divide C

0

into C

0

1

and C

0

2

such that C

i

and C

0

i

have the same set of facets, i = 1; 2.

Then C

0

1

and C

0

2

are constructible by de�nition and C

0

1

\ C

0

2

= (C

1

\ C

2

)� T is also

constructible from (I) for (d� 1)-dimensional balls.

� C

1

\ C

2

intersect with T by a (d� 1)-face.

Let us assume that C

2

contains T . Here T has all of its proper faces on @C

2

, thus it

divides C

2

into two balls C

21

and C

22

. (Here we assume that the vertices to be split in

the operation (II) for C are made to be di�erent in this division.) From (I) for (d� 1)-

dimensional balls, C

21

and C

22

are constructible. Now observe that C

0

= C

1

[C

21

[C

22

.

Let us de�ne B := C

1

\C

2

, B

1

:= C

1

\C

21

, and B

2

:= C

1

\C

22

. Here, B = B

1

[B

2

and

B

1

\B

2

is a (d� 2)-simplex. Because B is constructible by de�nition, (I) for dimension

d � 1 assures that B

1

and B

2

are constructible. Thus, C

1

[ C

21

is constructible, and

C

0

= (C

1

[ C

21

) [ C

22

is constructible. The following �gure shows this construction.
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Thus if we apply these two operations for a given d-ball, we �nally get a set of reduced

d-balls, that is, \reduced" means that we can not apply both of the operations above. Because

the operations preserve the constructibility, we can decide the constructibility of C from the

constructibility of the reduced d-balls. So characterizations of the constructibility of reduced

d-balls can be used for the decision of constructibility of d-balls.
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4.3 3-balls with no interior vertices

First we remark that the two operations introduced in the previous section preserve the

number of vertices contained in the interior of the ball. Our �rst step is the case of 3-balls with

no interior vertices, and correspondingly what we show in this section is a characterization of

constructibility of reduced 3-balls with no interior vertices.

Proposition 4.4. If a reduced 3-ball has no interior vertices, then it is constructible if and

only if it is a simplex, or equivalently, if and only if it has no spanning edge.

Proof. Let C be a reduced 3-ball with no interior vertices which is constructible. Assume

that C is not a simplex. Then from the De�nition 2.11, there are two subcomplexes C

1

and

C

2

satisfying the condition. In particular, C

1

\ C

2

is a 2-ball from Proposition 2.16 without

interior vertices. Here, C

1

\ C

2

should be made of the 2-faces contained in the interior of C,

thus at most one of the edges of each 2-face is on the boundary. But this is impossible from

Proposition 2.32.

This proposition provides a very easy algorithm to decide constructibility for this case,

that is, apply the reduction operation as possible and if we can divide the 3-ball into disjoint

set of simplices then the ball is constructible, and if we get stuck before that then it is

not constructible. We remark that we need no backtracking in this process. Corresponding

algorithm to implement this procedure is as follows: list up all the 2-faces and mark the

edges which are on the boundary. Then pick up a 2-face whose two edges are marked and

mark the third edge. After repeating this, all the edges are marked if and only if the 3-ball

is constructible.

The time complexity of this algorithm will be discussed in Section 4.7, and will be shown

to be O(#facets).
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4.4 Bing's house with two rooms

Other than algorithmic application, Proposition 4.4 can be used for a construction of non-

constructible 3-balls which is completely di�erent from that of Chapter 3.

Example 4.5. The example of 3-ball we will describe here is called \Bing's house with 2

rooms". This example is shown in [10]. This is known to be a non-shellable 3-ball, but here

we show that it is non-constructible, either.

Bing's house with two rooms

partition

tunnel

upper oor

lower oor

This is a house with 2 rooms as above, the walls are made out of one layer of bricks (cubes),

one enters to the lower oor through a tunnel from the roof and to the upper oor through a

tunnel from below. After constructing such an object C with cubes, we triangulate the cubes

as follows. Let us order the vertices as follows. First list vertices v such that there is a cube

D in which v is a connected component of D\ @C. (The vertices on the inside corners of C.)

Next list the vertices which is not listed yet and is on an edge that is a connected component

of D \ @C, for some cube D. Last list the remainder. Then we triangulate each 2-face such

that the �rst vertex in the list is contained in the added diagonal. Finally we triangulate each

cube into six simplices by taking cones from the �rst vertex to the six triangles contained

in the 2-faces of the cube which do not contain the vertex. (This triangulation is a \pulling

triangulation", made by pulling the vertices in the listed order. The concept \pulling" is

described in [55, Sec 14.2].)

In this systematic triangulation, we can see that each facet intersects with @C in a dis-

connected set, and this is the reason why C is not shellable. Moreover, we can also see that

there is no triangle in the interior of C such that 2 or 3 of its edges are on @C, that is, C is

reduced. So from Proposition 4.4, C is not constructible. (Because all of the vertices of C

are on @C, the condition for Proposition 4.4 is satis�ed.)

This is a thickened example of special spines mentioned in Section 5.1. In fact, the same

can be shown for other examples of special spines of 3-cubes, for example the \house with one

room". These non-constructible 3-balls have no knotted spanning edges, but it has spanning

edges in everywhere.
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Other than the above Bing's house and its relatives, there are many cases satisfying the

condition to be a 3-ball and having no interior vertices. For example, the three non-shellable

3-balls mentioned in Section 2.3.1 have no interior vertices. By a computer calculation using

our method, we can very easily check their constructibility.

Proposition 4.6. Rudin's ball, Gr�unbaum's ball, and Ziegler's ball are constructible.

Remark. The constructibility of Rudin's ball and Gr�unbaum's ball is already commented in

Provan and Billera [74], without mentioning how to check it. (My attempt, before noticing

that the constructibility of the balls is already known, to check Rudin's ball without using our

method failed, because the number of facets 41 was too many to enumerate all the possible

divisions.) The constructibility of Ziegler's ball was already known to me before I made a

computer calculation, because I made a paper model of the ball to check it.

On the other hand, Bing's house needs much more facets, over 1500, and it is far from

direct computer calculation or hand calculation. But our method also works easily for such

big examples to check on computers.
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4.5 3-balls with few interior vertices

This section extends the result of Section 4.3 to the cases with a few interior vertices. The

�rst extension is for the case with just one interior vertex.

Proposition 4.7. If a reduced 3-ball C has only one vertex v in the interior, then it is

constructible if and only if it has no spanning edge.

(This is equivalent to saying that C is constructible if and only if C is a star with a center

v.)

Proof. The \if" part is trivial because a reduced 3-ball with only one interior vertex v without

spanning edge must be a star with a center v, and a 3-dimensional star is constructible because

2-spheres are shellable. So we only have to show the \only if" part.

Let C be constructible. Because it is not a simplex, there are two subcomplexes C

1

and

C

2

satisfying the condition of De�nition 2.11. Here, C

1

and C

2

are constructible 3-balls and

C

1

\ C

2

= B is a 2-ball. Because B is made of 2-faces in

�

C

and can have at most one

interior vertex, from Proposition 2.32 together with the condition of reducedness of C, it has

no spanning edge. Thus B must be a 2-dimensional star with a center v.

Now remark that both of the 3-balls C

i

(i = 1; 2) are constructible and @C

i

� @C is a star

of v.

Because C

i

is constructible, if it is not a simplex, it will be divided again into two 3-balls

C

i1

and C

i2

such that C

i1

\ C

i2

= B

0

is a 2-ball made of 2-faces in

�

C

. B

0

does not have

interior vertices. If the boundary of B

0

is completely contained in @C, then Proposition 2.32

concludes that there is a 2-face in B

0

with two edges in @C, contradicting the reducedness of

C. Thus @B

0

must contain edges not in @C. These edges must be taken from

�

B

and there are

no choice other than to take two edges from

�

B

, both incident to v. Now if B

0

has a spanning

edge e not containing v, then it divides B

0

into two 2-balls the boundary of one of which is

made of e and those of @C. By Proposition 2.32, there must be a 2-face whose two edges

are in @B

0

, which is impossible from reducedness of C. Thus all the spanning edge of e must

contain v, which shows that all the interior edges of B

0

is incident to v.

C

2

C

1

C

11

C

12

v
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Here again the 3-balls C

ik

(k = 1; 2) are constructible and @C

ik

� @C is a star of v. Thus

if C

ik

is not a simplex, we can do the same argument as above for C

ik

. Continuing this

argument, we �nally have all the balls divided into simplices and then conclude that all the

interior edges of the cutting faces, equivalently all the interior edges of C, must be incident

with v, which shows that C has no spanning edges.

From this, it seems that having spanning edges is bad for constructibility under some

conditions. One more extension up to the case with two interior vertices can be achieved in

this line, but more complicated argument is needed.

Before describing it, we introduce one technical de�nition. In the following, for a pair of

simplicial complexes C � D, we denote by L(D;C) the set

�

�

�

� 2 sd

2

(D) : j�j \ j(C �D)j =

;

	

�

�

, where sd

2

(D) is the second barycentric subdivision of D.

C

D

L(D;C)

We remark that L(D;C) is just a point set but we can associate the cell complex structure

from C, that is, a cell complex f� \ L(D;C) : � 2 Cg [ f� \ @L(D;C) : � 2 Cg. In the

following, we treat L(D;C) as a cell complex in this sense and use the terms as if they are

simplicial complexes. It is easy to see that this cell complex structure has almost the same

property as D, for example, Proposition 2.32 holds for L(D;C) when jL(D;C)j is a 2-ball.

To show the following lemmas and proposition, we see the shapes of L(@D � @C; @D)

instead of those of @D � @C, for a pair of 3-balls C � D. We use this trick in order to avoid

the singular case. For this, see the following �gure.

C

D

C

D

L(@D � @C; @D)

L(@D � @C; @D)

In this �gure, the right �gure is a singular case of the left, but the shape of L(@D � @C; @D)

is the same, i.e., both are 1-balls.

We use four lemmas to show Proposition 4.12.
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Lemma 4.8. Let D be a 3-ball that is a subcomplex of a reduced 3-ball C, and assume that

C has two interior vertices u and v. If D satis�es:

� D has no vertices in its interior,

� L(@D � @C; @D) is a 2-ball and contains two vertices u and v in its interior,

� D contains a spanning edge of C, and

� u and v are not joined by an edge in D,

then D is not constructible.

u

v

Proof. Assume that there are constructible 3-balls which satisfy all the conditions of the

statement. Let D

�

be the smallest one among these. It is easy to see that D

�

is not a

simplex.

Remark that L(@D

�

� @C; @D

�

) has spanning edges because u and v are not joined by

an edge in D. Because C is reduced, the 2-faces of L(@D

�

� @C; @D

�

) have at most one edge

on the boundary. Thus from Proposition 2.32, the spanning edges of L(@D

�

� @C; @D

�

) have

the interior vertices on each side as the following �gure.

Now because D

�

is a constructible 3-ball, there are two constructible 3-balls D

1

and D

2

satisfying the condition of De�nition 2.11. Again from Proposition 2.32, the possibility of the

2-ball D

1

\D

2

is restricted. It is easy to observe that there are only the following cases.

(a) D

1

\D

2

contains one of u and v on its boundary and contains no spanning edges of C.

(b) The boundary of D

1

\D

2

contains one interior vertex and one spanning edge of D

1

\D

2

.

(c) D

1

\D

2

contains both u and v on its boundary.

(d) D

1

\D

2

does not contain u and v, and contains two spanning edges of C on its boundary.
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u v

D

1

D

2

(d)(a)

u

v

D

2

D

1

u v

D

1

D

2

(b)

u

v

D

1

D

2

(c)

In the �gure, D

2

of (a), D

2

of (b), D

2

of (c), and D

2

of (d) satisfy the �rst two and the last

condition in the statement. In (a), D

1

can not contain spanning edges of C, so D

2

contains

spanning edges. In (b) and (d), D

1

\ D

2

contains spanning edges of C, thus D

2

contains

spanning edges of C. In (c), D

1

\D

2

contains spanning edges of C because u and v are not

joined by an edge in D, so D

2

has spanning edges. Thus in all cases, D

2

satis�es all the

conditions of the statement, contradicting the minimality of D

�

.

Remark. For the last condition of the nonexistence of the edge uv in D, we note that if uv is

in

�

D

, the proof fails because D

2

in (c) can have no spanning edges of C if uv is in D

1

\D

2

.

But if uv is in @D, we have the next lemma.

Lemma 4.9. Let D be a 3-ball that is a subcomplex of a reduced 3-ball C, and assume that

C has two interior vertices u and v. If D satis�es:

� D has no vertices in its interior,

� L(@D � @C; @D) is a 2-ball and contains two vertices u and v in its interior,

� D contains a spanning edge of C, and

� the edge uv is in @D � @C.

then D is not constructible.

u

v

Proof. Assume that there are constructible 3-balls which satisfy all the conditions of the

statement. Let D

�

be the smallest one among these. It is easy to see that D

�

is not a

simplex.

In this case, L(@D

�

� @C; @D

�

) does not have spanning edges.

Because D

�

is a constructible 3-ball, there are two constructible 3-balls D

1

and D

2

satis-

fying the condition of De�nition 2.11. It is easy to observe that there are only the following

cases.
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(a) D

1

\D

2

contains one of u and v on its boundary and contains no spanning edges of C.

(b) D

1

\D

2

contains both u and v on its boundary but the edge uv.

(c) D

1

\D

2

contains the edge uv on its boundary

(a)

u

v

u u v

(b)

(c)

v

D

1

D

2

D

1

D

2

D

1

D

2

Here D

2

in (a), and one of D

1

and D

2

in (c) satisfy the conditions of the statement, con-

tradicting to the minimality of D

�

. And in (b), D

2

satis�es the conditions of Lemma 4.8,

contradicting its constructibility.

Lemma 4.10. Let D be a 3-ball that is a subcomplex of a reduced 3-ball C, and assume that

C has two interior vertices u and v. If D satis�es:

� D has no vertices in its interior,

� L(@D � @C; @D) is a disjoint union of two 2-balls each of which contains one of u and

v in its interior, and

� D has a spanning edge of C,

then D is not constructible.

v

u

Proof. Assume that there are constructible 3-balls which satisfy all the conditions in the

statement. Let D

�

be the smallest one among these. It is easy to see that D

�

is not a

simplex.

From Proposition 2.32, the 2-balls which are the components of L(@D � @C; @D) can have

no spanning edge, thus stars of u and v, respectively.

Now D

�

is a constructible 3-ball, it is divided into two constructible 3-balls D

1

and D

2

as

De�nition 2.11. The 2-ball D

1

\D

2

is the following:

(a) D

1

\D

2

has one of u and v on the boundary and has no spanning edge of C.

(b) D

1

\D

2

has both u and v on the boundary.
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(a)

(b)

u

v

u

v

D

1

D

2

D

1

D

2

In the case (a), D

2

satis�es all the conditions of the statement, contradicting the minimality

of D

�

. For the case (b), if D

1

\ D

2

does not contain the edge uv (or the edge uv does not

exist in D from the �rst), D

1

\D

2

contains spanning edges of C and at least one of D

1

and

D

2

does not contain the edge uv, so one of D

1

and D

2

satis�es the conditions of Lemma 4.8,

contradicting the constructibility of D

1

and D

2

. And if D

1

\D

2

contains the edge uv, then

at least one of D

1

and D

2

contains spanning edges of C, thus Lemma 4.9 concludes that at

least one of D

1

and D

2

is not constructible, again lead to a contradiction.

Lemma 4.11. Let D be a 3-ball that is a subcomplex of a reduced 3-ball C, and assume that

C has two interior vertices u and v. If D satis�es:

� D has u on its boundary and v in its interior,

� L(@D � @C; @D) is a 2-ball which contains v in its interior, and

� D has a spanning edge,

then D is not constructible.

v

u

Proof. Assume that there are constructible 3-balls which satisfy all the conditions in the

statement. Let D

�

be the smallest one among these. It is easy to see that D

�

is not a

simplex.

By the same observation as in the proof of the previous lemma, L(@D � @C; @D)is a star

of v. Because D

�

is a constructible 3-ball, it is divided into two constructible 3-balls D

1

and

D

2

as De�nition 2.11. From Proposition 2.32, the possibility of the 2-ball D

1

\D

2

is only the

following.

(a) D

1

\D

2

contains u and no spanning edge.

(b) D

1

\D

2

contains v and no spanning edge.

(c) D

1

\D

2

contains both u and v.

(a)

(b)

(c)

u v u

v

u

v

D

2

D

2

D

1

D

2

D

1

D

1
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In the case (a), D

2

satis�es the conditions of the statement, contradicting the minimality

of D

�

. In the case (b), D

1

satis�es the conditions of Lemma 4.10, contradicting the con-

structibility of D

1

. In the case (c), if the edge uv is not contained in D

1

\ D

2

(or it does

not exist in D from the �rst), then D

1

\ D

2

contains spanning edges of C and at least one

of D

1

and D

2

does not contain uv, thus satis�es the conditions of Lemma 4.8, contradicting

its constructibility. And if the edge uv exists in D

1

\ D

2

, then at least one of D

1

and D

2

contains spanning edges of C, so it satis�es the conditions of Lemma 4.9, contradicting the

constructibility of D

1

and D

2

.

Now we can show the following proposition.

Proposition 4.12. If a reduced 3-ball has exactly two interior vertices, then it is constructible

if and only if it has no spanning edges.

Proof.

[if part]

Let C be a reduced 3-ball with two interior vertices u and v which has no spanning edges.

Then the facets of C can be only of two types: (i) one edge and its two end vertices are in

@C and the rest are in

�

C

, and (ii) one 2-face and its proper faces are in @C and the rest

are in

�

C

. From this we conclude that every facet of C belongs to either staru or star v,

thus C = staru [ star v = star u [ (star v � staru). Here we also observe that there is an

edge between u and v, so v lies in @(staru). Hence (star v � staru) = v � (2-ball) and it is

constructible because 2-balls are constructible. Also staru = u � (2-sphere) is constructible,

and (staru) \ (star v � staru) = (2-ball) is constructible, thus C is constructible.

[only if part]

Let C be a reduced 3 ball with two interior vertices u and v, and assume that it is constructible

and has spanning edges. Then there are two constructible 3-balls C

1

and C

2

satisfying the

condition of De�nition 2.11. Here D

1

\ D

2

is a 2-ball contained in the interior of C. From

the reducedness of C and Proposition 2.32, there are only two possibility for D

1

\D

2

.

(a) D

1

\D

2

contains one interior vertex of C.

(b) D

1

\D

2

contains two interior vertices of C.

(b)(a)

u v

u

v

D

2

D

1

D

2

D

1

In the case (a), D

2

satis�es the conditions of Lemma 4.11. In the case (b), if the edge uv

is not contained in D

1

\ D

2

, then D

1

\ D

2

contains spanning edges of C and one of D

1
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and D

2

does not contain uv, so it satis�es the conditions of Lemma 4.8. And if the edge

uv is contained in D

1

\ D

2

, then at least one of D

1

and D

2

has spanning edges of C, thus

satis�es the conditions of Lemma 4.9. Thus in all the cases, at least one of D

1

and D

2

is not

constructible. A contradiction.

We �nally come to state the following theorem, summarizing Propositions 4.4, 4.7 and

4.12.

Theorem 4.13. If a reduced 3-ball has at most two interior vertices, then it is constructible

if and only if it has no spanning edges.

The next section provides an example which shows that the number \two" of interior

vertices in this theorem is sharp.
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4.6 3-balls with many interior vertices

From the results of the last section, one may think that we can give a characterization of

constructibility for arbitrary reduced 3-balls in a similar way, but the situation already is

di�erent at all in the case with three interior vertices.

Theorem 4.14. There are shellable reduced 3-balls with spanning edges. Such example can

be constructed with only three interior vertices.

Proof. The following is a list of facets of an example of such 3-balls with 8 vertices and 15

facets.

1257 2367 1347 1457 2567 3467

1258 2368 1348 1458 2568 3468

4578 4678 5678

The vertices \4", \5" and \6" are interior vertices, and the edge \78" is the spanning edge.

This example is constructed as follows. First we take a triangulated 2-ball as the following

�gure and form a bipyramid by introducing two new vertices \7" and \8". Then replace the

two tetrahedra \4567" and \4568" by three tetrahedra \4578", \4678" and \5678". (This

operation is a `ip'.) It is easy to check \78" is a spanning edge and the ball is reduced, but

this example is shellable.

2

5

6

4

7

2

3

2

3

7

8

6
flip

111

3 8 8

7

4
5
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Also the converse is not true for the case with many interior vertices.

Theorem 4.15. There are nonconstructible reduced 3-balls with no spanning edges.

Proof. By Theorem 4.1, a 3-sphere C is constructible if and only if C n � is constructible for

any facet � of C, and Theorem 3.8 assures the existence of nonconstructible 3-sphere. If we

take C to be non-constructible, then C n� is nonconstructible. And such 3-balls derived from

3-spheres by removing one facet clearly is reduced and contains no spanning edges.
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4.7 The algorithm

As is mentioned in Section 4.3, the characterization of constructibility of reduced balls de-

rived in this chapter can be used for giving a simple algorithm to decide constructibility of

(not necessarily reduced) 3-balls. The algorithm �rst applies the two reduction operations

introduced in Section 4.2, and then check the constructibility of derived reduced balls.

However since producing reduced balls literally is not e�cient, so we give an e�cient

algorithm which implement the way described above.

In our algorithm, we use Theorem 4.13 in the last step to get the answer, that is, we check

whether the ball has spanning edges or not. This property, having spanning edges or not, is

not a�ected by the operation (I) of dividing by a triangle, so we need not do this operation.

As for the operation (II) of splitting a triangle, what we really need to do is to make the

third edges appear on the boundary of the ball. So instead of doing the real splitting, we just

keep in mind that the edge is now on the boundary by marking the edge.

From these observations, we propose the following algorithm.

Algorithm

Given: a list of facets of a triangulated 3-ball C which has at most two interior vertices.

Step 0: Calculate the boundary complex @C of C, and make a list L of edges of C in which

the edges on @C is marked. Also check which vertices are in the interior.

Step 1: List up all the 2-faces of C and if there is a 2-face whose 2 edges are marked in L,

then mark the third edge. Repeat this step while there are such 2-faces.

Step 2: Check the edges which are not marked in L. If there is an unmarked edge with no

interior vertex, then C is not constructible. Otherwise C is constructible.

To make this algorithm run e�ciently, we should keep the list of 2-faces and the list of

edges, and marking should be done on the list of edges. Marking the edges should be reected

to the list of 2-faces, that is, each 2-face should be linked to each edge and vice versa. We

also should avoid unnecessary checking in Step 1, so we make a partitioning of the list of

2-faces into 4 parts by how many edges are marked. (In fact, the list of 2-faces with three

edges marked is not needed.) While Step 1 is repeatedly executed, the marking of one edge

will change the situation of the 2-faces which contain the edge. So as soon as one edge is

newly marked, we move the a�ected 2-faces into suitable partition. By this careful treatment,

each 2-face will be checked at most 3 times, thus the total number of repetition of Step 1 is

bounded by 3� f

2

, where f

i

is the number of i-faces.

In Step 0, calculation of the boundary complex can be done in O(f

3

). This can be done

in a very simple way: First produce four 2-faces from one facet and list all of them without

considering the multiplication. Then, to remove multiplication, check the list of 2-faces from
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top to bottom and if the 2-face is new then do nothing and it appeared already then remove

it. This can be performed if the vertices in each 2-face is sorted and use a large table to

indicate the 2-faces already appeared. The list of edges can also be made in the same way.

Here we remark that the number of faces satis�es certain equations from Dehn-

Sommerville equations for spheres, see p. 15. For the case of 3-balls, O(f

0

2

) = O(f

1

) =

O(f

2

) = O(f

3

). So each operations of making lists can be done in O(f

3

) and the number of

repetitions in Step 1 is also in O(f

3

), we conclude that the algorithm runs in O(f

3

) time.
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Chapter 5

The hierarchy of combinatorial

decompositions of 2-dimensional

simplicial complexes

From the drastic di�erence between the simplicity of 2-pseudomanifolds shown in Section 2.5

and the complexity of 3- and higher dimensional pseudomanifolds shown in Chapter 3, one

may think that the 2-dimensional world is very simple and 3-dimensional world is complicated.

This is not wrong but it is a big mistake if one is tempted to include general 2-dimensional

simplicial complexes other than pseudomanifolds to his \2-dimensional world." In this chap-

ter we show several examples which show that the 2-dimensional world becomes already

complicated enough if general simplicial complexes are considered.

This may be related to the fact that some class of 2-dimensional simplicial complexes

are spines of 3-dimensional manifolds, and 3-manifolds can be reconstructed from such

spines. Thus the topology of general 2-dimensional simplicial complexes is complicated as

3-dimensional manifolds, far from the case of 2-pseudomanifolds.

After reviewing the formerly known result that every triangulation of the dunce hat is not

shellable in Section 5.1, in Section 5.2 we extend the result and show that every triangulation

of the dunce hat is not constructible. This shows the existence of 2-dimensional simplicial

complexes which are Cohen-Macaulay but not constructible. In the next Section 5.3 we give

a modi�ed example of the dunce hat and show the example is shellable but not extendably

shellable. In Section 5.4 we use this example to construct an example which is constructible

but not shellable, and in Section 5.5 an example which is non-shellable but has a shellable

subdivision.
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5.1 Cohen-Macaulay but not shellable 2-complexes

By seeing Proposition 2.31, one may guess stronger implication: every Cohen-Macaulay 2-

complex may be shellable. But unfortunately it isn't. The following fact is known.

Proposition 5.1. (Stanley [87, p.84])

Every triangulation of the \dunce hat" is not shellable, while it is Cohen-Macaulay.

Dunce hat

The dunce hat is shown in the �gure above. Here, three edges of the triangle is identi�ed as

is indicated by the arrows.

Proof. The argument to prove this proposition is as follows: that the dunce hat D is con-

tractible (for example see Zeeman [97]) means that D has

~

H

i

(D) = 0 for all i, which means

that h

3

(D) = 0. If D is shellable, every facet F

i

of its shelling F

1

; : : : ; F

t

should satisfy

(F

1

[ � � � [ F

i�1

) \ F

i

6= @F

i

because h

3

(D) = 0 (see Proposition 2.26), but this is impossible

because � has no boundary.

That D is Cohen-Macaulay is veri�ed by checking the links one by one. For 2-faces and

1-faces, there is nothing to be checked especially. For 0-faces, their links are 1-dimensional

connected complex, so

~

H

�1

=

~

H

0

= 0. For the empty face, its link is the whole D and

~

H

i

(D) = 0 for all i because D is contractible. Thus D is Cohen-Macaulay.

This example, the dunce hat, arises from the study of simplicial collapsing in combinatorial

topology. In the context of combinatorial topology, if M

2

is obtained from M

1

by a sequence

of elementary collapse, M

2

is called a spine of M

1

. The dunce hat is a famous example of a

spine of a 3-cube which is not collapsible. That every triangulation of the dunce hat does not

simplicially collapses to a point is easily seen because there is nowhere to start with: it has no

boundary, thus there are no free faces. Other such examples, spines of 3-cubes which are not

collapsible to a point, are known for example, \Bing's house with two rooms", \house with

one room"(or \abalone"). (See Hog-Angeloni and Metzler [50], Matveev and Rolfsen [64],

etc.)
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House with one room (or abalone)

Bing's house with two rooms

Especially, the two examples shown in the picture above have the property that the

singularities are in general position. More precisely, the neighborhood of each point is one of

the following.

(I)

(II)

(III)

In this �gure, (II) and (III) are singularities. A 2-simplicial complex is a standard polyhedron

or special polyhedron if the neighborhood of each point is one of the above and that the

singularities form a cell complex, that is, the points (II) forms a disjoint set of open arcs.

(It should be noted that in combinatorial topology \polyhedron" is used for the geometric

realization of a simplicial complex, di�erent from the term of combinatorics which means an

unbounded polytope.) So we can say that \Bing's house with two rooms" and the \house

with one room" are spines of 3-cubes which is at the same time special polyhedra. Such

spines are called standard spines or special spines. These standard spines are extensively

studied in relation with 3-manifolds, for example Benedetti and Petronio [6], Hog-Angeloni

and Metzler [50], Matveev and Rolfsen [64].

In the next section, we want to discuss a class of 2-simplicial complexes slightly larger

than that of standard polyhedra.

De�nition 5.2. A 2-simplicial complex is a near-standard polyhedron if the neighborhood of

each point is one of the above three types except for one point. The exceptional point is the

non-standard point and the rest are standard points.

For example, the dunce hat is not a standard polyhedron, but is a near-standard polyhe-

dron, see p. 107.
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5.2 Dunce hat is not constructible

Now the dunce hat is Cohen-Macaulay but not shellable, it is natural to ask whether it is

constructible or not. The following is an example of a triangulation of the dunce hat.

1231

2

3

2

3

1

4

5
6

7

8

If one examines the constructibility of this example by computers or by hands, he will

�gure out that it is not constructible. In fact, we can show that any triangulations of the

dunce hat are not constructible, which gives a di�erent proof of Proposition 5.1. For this, we

need the following lemmas.

Lemma 5.3. If a simplicial complex C is the union of its subcomplexes C

1

and C

2

, i.e.,

C = C

1

[ C

2

, then

(�1)

dimC

h

dimC+1

(C) = (�1)

dimC

1

h

dimC

1

+1

(C

1

) + (�1)

dimC

2

h

dimC

2

+1

(C

2

)

� (�1)

dimC

1

\C

2

h

dimC

1

\C

2

+1

(C

1

\ C

2

):

Proof. From the de�nition of h-vector,

(�1)

dimC

h

dimC+1

(C) = �f

�1

(C) + f

0

(C)� f

1

(C) + � � �+ (�1)

dimC

f

dimC

:

The statement follows immediately from this.

(This is just the same to say that the reduced Euler characteristic is a valuation.)

For a 2-dimensional simplicial complex, the link of a vertex is a 1-dimensional simplicial

complex, i.e., a graph. We say a vertex is splittable if the graph appeared as its link has a

bridge, where a bridge is a vertex of a graph such that the removal of the vertex increases the

number of connected components of the graph.

An easily observed fact is the following lemma.

Lemma 5.4. Assume that C is a pure 2-dimensional simplicial complex and it is divided into

two parts C

1

and C

2

such that C

1

\C

2

is a 1-dimensional simplicial complex and C

1

[C

2

= C.

If C has at most one splittable vertex, then C

1

\ C

2

is a graph with cycles, i.e., it is not a

tree. Especially, h

2

(C

1

\ C

2

) > 0.
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Proof. If a graph is a tree, then it has at least two end vertices. But in C

1

\ C

2

, a vertex is

an end vertex only if it is a splittable vertex in C. Thus the graph C

1

\C

2

can not be a tree.

The inequality h

2

(C

1

\ C

2

) > 0 is easily deduced from the calculation of h-vectors of

1-dimensional complexes that h

2

= #edges�#vertices + 1.

For example, the standard points are not splittable. In the dunce hat, the neighborhood

of each point is as follows:

So there is only one point which is splittable (the non-standard point at the top of the hat),

and the other points are all standard. Thus any division of the dunce hat into two parts

always produces a graph with positive h

2

in their intersection.

What we show is the following proposition.

Proposition 5.5. A contractible 2-dimensional simplicial complex C with at most one split-

table vertex is not constructible. Especially, any triangulations of a contractible near-standard

polyhedron are all non-constructible.

Proof. Let C be constructible. Then there are two subcomplexes C

1

and C

2

satisfying the

condition of constructibility. Here, dimC

1

= dimC

2

= 2 and dimC

1

\ C

2

= 1. We observe

that:

� From Lemma 5.3, we have h

3

(C) = h

3

(C

1

) + h

3

(C

2

) + h

2

(C

1

\ C

2

):

� From Lemma 5.4, h

2

(C

1

\ C

2

) > 0.

� Because C is contractible, h

3

(C) = 0.

Hence one of h

3

(C

1

) and h

3

(C

2

) should be negative. This contradicts the fact that C

1

and

C

2

are constructible because Cohen-Macaulay complexes has non-negative h-vectors from

Proposition 2.23.

Since the dunce hat is a contractible near-standard polyhedron, we have the following

corollary.

Corollary 5.6. Any triangulation of the dunce hat is not constructible.
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5.3 Shellable but not extendably shellable 2-complexes

Slight modi�cation of the dunce hat gives a very interesting example. See the following �gure.

(The vertices with the same labeling are identi�ed.)

F

1

3 2 1

74

5 6

2

2

3

In this example D

0

, the boundary is just one edge f1; 3g. On the other hand, counting

the number of faces shows that f(D

0

) = (1; 7; 19; 13), thus h(D

0

) = (1; 4; 8; 0). So h

3

(D

0

) = 0.

(This can be shown from the fact that D

0

is contractible.) Again this shows that every facet

F

i

in a shelling F

1

; F

2

; : : : ; F

t

should satisfy (F

1

[ � � � [ F

i�1

)\ F

i

6= @F

i

. Thus the only facet

which can be chosen for the last facet is the facet F indicated in the �gure. That there is

a shelling can be checked easily as indicated in the �gure below. So we conclude that this

simplicial complex D

0

is shellable and that all its shelling ends at the unique facet F .

This property that all shelling ends at one unique facet implies that the simplicial complex

D

0

is not extendably shellable because every partial shelling which starts from F will not

extend to the whole shelling of D

0

.

4

89 1

2
3

7
6

510

11

12

13
1

3 2 1

2

2

3

Proposition 5.7. There are 2-dimensional simplicial complexes which are shellable but not

extendably shellable.
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By taking a careful look of the triangulation above, one will notice that it is not vertex

decomposable, i.e., any deletion of one vertex produces a non-shellable complex. Thus we

have shown the following at the same time.

Proposition 5.8. There are 2-dimensional simplicial complexes which are shellable but not

vertex decomposable.

Remark. The existence of shellable but not extendably shellable 2-complexes is not new.

Bj�orner [14, p.277, Exercise 7.37] shows a smaller example:

123, 125, 126, 134, 136, 145, 234, 235, 246, 356, 456.

This is a triangulation of the projective plane plus one additional facet \123". This example

is shellable in this order of facets, however 145-456-246-356 is a partial shelling but this will

not extend further. The f -vector of this example is (1; 6; 15; 11).

(For this, I thank G�unter M. Ziegler for the information of this example, and also Fumihiko

Takeuchi for letting me know the example of the partial shelling can not be extended. Bj�orner

and Eriksson [16] also has a reference to this example.)

+

1

2

3

1

6

5

4

6

4

1

2

3

1

6

5

4

6

4

1

2 3

Remark. If we take a barycentric subdivision ofD

0

, then it is vertex decomposable because the

barycentric subdivision of a shellable complex is vertex decomposable, see for example Bj�orner

and Wachs [22]. On the other hand, it is still not extendably shellable. The author does not

know whether there are extendably shellable but not vertex decomposable 2-complexes or

not.

Remark. After the remark above was written, Moriyama and Takeuchi [68] answered the

question. That is, they made two 2-dimensional examples which are extendably shellable but

not vertex decomposable. Both of their examples consist of 6 vertices and 10 facets.
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Remark. Simon [82] showed an example of 2-dimensional shellable simplicial complex with 7

vertices and 14 facets:

123, 134, 125, 147, 157, 234, 235 247, 357, 267, 367, 246, 356, 456,

which has the property that every shelling ends by \456" as same as our exampleD

0

. Although

this one has a larger f -vector (1; 7; 20; 14) than our D

0

, it has precisely the same property as

D

0

, that is, h

3

= 0 (in fact it is contractible) while it has only one edge \45" as its boundary.

Thus this example can be seen as a variant of our example D

0

. (I thank Fumihiko Takeuchi

for letting me know about this paper.)

In Simon [82], the following 2-dimensional simplicial complex with 6 vertices and 10 facets

is also given:

123, 234, 134, 146, 156, 125, 235, 246, 356, 456.

This example is shellable but not vertex decomposable, so Proposition 5.8 is not a new result.

Though the latter example was given as an example of shellable but not vertex decom-

posable one, it is also an example of shellable but not extendably shellable simplicial complex

which is even smaller than Bj�orner's examples remarked in the preceding page. This fact is

pointed out by Moriyama and Takeuchi below.

Remark. Recently Moriyama [67] and Moriyama and Takeuchi [68] made an attempt to enu-

merate small 2-dimensional shellable simplicial complexes, and found out many examples of

shellable but not extendably shellable ones. Among them, two examples have only 6 ver-

tices and 9 facets (both has f -vectors (1; 6; 14; 9)), even smaller than Simon's example in the

remark above. The lists of facets of these examples are the following:

1-V6F9: 124, 126, 134, 135, 245, 256, 346, 356, 456,

and

2-V6F9: 123, 126, 135, 234, 245, 256, 346, 356, 456.

These examples are shown by computer enumeration to be the minimum among the

examples which are shellable but not extendably shellable simplicial complexes.

These two examples are contractible and the reasoning of their non-extendable shellability

are similar to our D

0

, though the boundaries of both of them consist of two edges.
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5.4 Constructible but not shellable 2-complexes

The next question is whether there are constructible 2-complexes which are not shellable.

The answer is yes.

An example arises from the example shown in the previous section. Let D

1

and D

2

be

two copies of D

0

in the previous section and D

00

the simplicial complex derived by joining

them by the edge f1; 3g.

8

8 8

9

10 11

12

D

1

D

2

1

2

3

5

4

3 2

7

6

2

1 1

3

3

1

It is easy to check that D

00

is constructible, because D

1

and D

2

are shellable and D

1

\D

2

=

f1; 3g. But D

00

is not shellable. The non-shellability is shown as same as the case of the dunce

hat: D

00

has no boundary but h

3

= 0. (In this example, f = (1; 12; 37; 26) and h = (1; 9; 16; 0).

The fact that h

3

= 0 is also deduced from the fact that D

00

is contractible.)

Thus we have the following proposition.

Proposition 5.9. There are 2-dimensional simplicial complexes which are constructible but

not shellable.

Remark. This example has two splittable vertices, 1 and 3.
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5.5 Subdivisions and shellability

One more question arises from Proposition 2.31: whether shellability is topological for general

2-dimensional simplicial complexes or not. We have the following proposition which answers

this question.

Proposition 5.10. There are 2-dimensional simplicial complexes which are not shellable but

has a shellable subdivision, that is, shellability for 2-dimensional simplicial complexes is not

a topological property.

Proof. An example is the following, namely, two copies of D

0

of Section 5.3 are joined by a

triangle.

3 2 1

1

1

8

9

9

9

10

11

12

13

4 7

65

2

2

3

8

The example shown in the �gure is not shellable: its h-vector is (1; 10; 16; 0) (f -vector is

(1; 13; 39; 27)) and h

3

= 0. (This again can be calculated from the fact that this example

is contractible.) This shows that the 2-face f1; 3; 8g must be the last facet in every shelling

because the edge f3; 8g is the only edge on the boundary, but it cannot be the last one

because removing it gives a non-shellable complex because the link of the vertex 1 becomes

disconnected. Thus no facet can be the last facet in a shelling, which means that the complex

is not shellable.

But let us stellarly subdivide it as follows.
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3 2 1

1

1

8

9

9

9

2

2

3

8

2

3

4

5

6

7

9

10

11

13

18

22 23

25

26

14

12

1

8

21

20

24

27

29

19

17 16

15

28

Then it becomes shellable: the small numbering in the �gure shows a possible example of

its shelling.

As for stellar subdivisions of 2-dimensional simplicial complexes, the following theorem is

known.

Theorem 5.11. (Ewald [37])

Let C and C

0

be two simplicial complexes such that jCj ' jC

0

j, then there is a simplicial

complex C

00

which is a common stellar subdivision of C and C

0

.

There are two types of stellar subdivisions for 2-dimensional simplicial complexes: (i) p is

taken in the interior of a 2-face, and (ii) p is taken in the interior of a 1-face. Brugesser and

Mani has shown the following theorem.

Theorem 5.12. (Brugesser and Mani [25]) Every stellar subdivision of a shellable d-

dimensional simplicial complex is again shellable.

Thus if the reverse operations of stellar subdivisions of the above two types preserve

shellability, shellability becomes topological property, but the example above shows that the

type (ii) will not preserve shellability in general. However the type (i) preserves shellability

as follows.

Proposition 5.13. Let C be a 2-dimensional simplicial complex and � be a 2-face of C. Let

p be an interior point of � and C

0

be the stellar subdivision of C by p. If C

0

is shellable, C is

shellable.

Proof. Let the facet � = abc be divided into three facets �

1

= abp, �

2

= bcp and �

3

= cap by

the stellar subdivision. Let �

0

: �

1

; �

2

; : : : ; �

k

; �

1

; �

k+1

; : : : ; �

l

; �

2

; �

l+1

; : : : ; �

m

; �

3

; �

m+1

; : : : ; �

t
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be a shelling of C

0

. (Permute a, b and c if needed.) We will show that an ordering of facets

� : �

1

; �

2

; : : : ; �

k

; �

k+1

; : : : ; �

l

; �; �

l+1

; �

m

; �

m+1

; : : : ; �

t

is a shelling of C.

Let us check that each facet satis�es the condition of shelling in this new ordering. Let

us denote by Prev

�

(�

i

) the union �

1

[ �

2

[ � � � ; �

i�1

in an ordering � of facets.

� First, �

1

to �

k

satis�es the condition of shelling is obvious because there is no di�erence

from the shelling �

0

of C

0

.

� Because Prev

�

0

(�

1

) \ �

1

is an edge ab and the edges ap and bp will not appear in

Prev

�

0

(�

i

) while i � l, Prev

�

0

(�

i

)\ �

i

= Prev

�

(�

i

)\ �

i

for k+1 � i � l. Thus �

k+1

to �

l

satis�es the condition of shelling.

� The edge ab is in Prev

�

(�) because Prev

�

(�

1

) = Prev

�

0

(�

1

) contains it. Thus if � do

not satisfy the condition of shelling in �, then there is only one possibility: the vertex

b is contained in Prev

�

(�) but two edges bc and ca are not contained in it. But if so, in

�

0

, Prev

�

0

(�

2

) should be the union of the edge ap and the vertex b, contradicting that

�

0

is a shelling. So � satis�es the condition of shelling.

� From �

l+1

to �

m

, the di�erence between Prev

�

0

(�

i

) \ �

i

and Prev

�

(�

i

) \ �

i

is that the

edge ca is always contained in the latter but it may not be contained in the former. But

this di�erence will not corrupt the condition of shelling. Thus �

l+1

to �

m

satis�es the

condition of shelling.

� From �

m+1

to �

t

, Prev

�

0

(�

i

)\ �

i

= Prev

�

(�

i

)\ �

i

, so the condition of shelling is satis�ed.

Thus � is a shelling of C, which shows that C is shellable.
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Index

barycentric subdivision, 14

Bing's house with 2 rooms, 89, 105

boundary complex, 10

boundary complex (of a polytope), 11

bridge (of a graph), 106

bridge index (b)

of knots, 57

of tangles, 58

bridge index (b

0

), 61

bridge index (b

00

), 62

bridge position

of knots, 57

of tangles, 58

closure, 10

Cohen-Macaulay, 27

collapsible, 32

combinatorial manifold, 16

combinatorially equivalent, 12

compatible, 75

connected sum (of knots), 42

constructible, 22

contractible, 15

cubical barycentric subdivision, 66

cubical complex, 11

CW complex, 11

regular, 11

d-ball, 16

Dehn-Sommerville equations, 15

deletion, 25

dimension (of a simplicial complex), 9

double suspension theorem, 34, 55

d-sphere, 16

dunce hat, 104

edge, 9

elementary move

of knot, 38

of spanning arc, 40

of tangle, 40

elementary simplicial collapse, 32

equivalent

knot, 38

spanning arc, 39, 40

tangle, 40

extendably shellable, 18

f -polynomial, 14

f -vector, 14

face, 9

face poset, 12

facet, 9

free face, 32

Furch's knotted hole ball, 47

geometric realization, see underlying space

Gr�unbaum's 3-ball, 20

h-polynomial, 14

h-vector, 14

height function of, 61

homology sphere, 33

House with one room, 105

interior, 10

join, 13

k-decomposable, 25

knot, 38

knot group, 43

knotted

knot, 38

spanning arc, 39

link, 12

link, 41

local maximum, 61

Lockeberg's polytope, 26

Mani and Walkup's sphere, 26

near-standard polyhedron, 105

121



non-standard point, 105

pair

ball pair, 43

sphere pair, 43

standard ball pair, 43

standard sphere pair, 43

partitionable, 30

PL, 16

PL-d-ball, 16

PL-d-sphere, 16

Poincar�e sphere, 33, 56

polyhedral complex, see polytopal complex

polytopal ball, 16

polytopal complex, 11

polytopal decomposition, 16

polytopal sphere, 16

prime knot, 42

projection, 61

projective plane, 34

pseudomanifold, 10

pure, 10

pyramid, 13

reduced d-ball, 85

reduced Euler characteristics, 15

Rudin's 3-ball, 20

semispanning disc, 41

shedding vertex, 25

shellable, 18

shelling, 18

simplicial complex, 9

abstract, 9

simplicially collapsible, 32

simultaneously straight, 41

simultaneously straight with respect to a

disc, 73

skeleton, 9

spanning arc, 39

spanning disc, 41

spanning edge, 39

special polyhedron, see standard polyhe-

dron

special spine, see standard spine

splittable, 106

standard point, 105

standard polyhedron, 105

standard spine, 105

star, 12

stellar subdivision, 13

straight, 41

strongly connected, 10

subdivision, 13

suspension, 13

tame, 38

tangle, 40

tangled, 41

trefoil knot, 42

triangulation, 16

trivial

knot, 38

spanning arc, 39

tangle, 41

type

of knot, 38

of spanning arc, 39

of tangle, 40

underlying space, 16

unknot, 38

unknotted

spanning arc, 39

vertex, 9

vertex decomposable, 25

Walkup's sphere, 26

weakly compatible, 75

Ziegler's 3-ball, 20
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