
Computation Offloading over a Shared Communication Channel for
Mobile Cloud Computing

Kai Guo, Mingcong Yang, and Yongbing Zhang
Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
Email: s1730141@s.tsukuba.ac.jp, s1730144@s.tsukuba.ac.jp, ybzhang@sk.tsukuba.ac.jp

Abstract—In this paper, we focus on the problem of offloading
computation intensive tasks of mobile applications from resource-
scarce mobile devices to the servers located at the edge networks
in order to minimize the average response time of the applications.
We consider a number of mobile devices connected by a shared
communication channel to a server located in the edge network
and therefore transmission collision occurs if more than one
mobile device attempts to transmit data simultaneously. We first
formulate the offloading problem as a mixed integer programming
(MIP) problem. Since the problem is NP-hard, we design a
heuristic algorithm that considers possible transmission collision
over the shared channel and offloads efficiently tasks of a mobile
application to the server. We demonstrated that our proposed
algorithm outperforms previous offloading algorithms significantly
in terms of the average response time. Furthermore, we showed
that our proposed algorithm yields less energy consumption than
previous algorithms in realistic system scenarios.

Index Terms—Mobile Cloud Computing, computation offload-
ing, shared communication channel

I. INTRODUCTION

Mobile Cloud Computing (MCC) as a new paradigm for
mobile applications extends the computation and storage ca-
pabilities of mobile devices and furthermore reduces the power
consumptions at mobile devices [1], [2]. The limitations of
computing power and storage capacity along with battery
lifetime of a mobile device can be alleviated by offloading
computation intensive tasks from the mobile device to the
servers allocated in the edge networks for remote processing
[3], [4]. However, it is quite challenging to determine how
to offload tasks of a mobile application since the offloading
performance depends heavily on the characteristics of both the
application and mobile device and also on the bandwidth of
the communication network connecting the mobile device to the
servers. A number of mobile devices are usually connected to a
server located in the edge network via a shared access network,
called shared channel in this paper, such as a wireless LAN or
a cellular network. Therefore, more than one data transmission
may collide with each other over the shared channel.

In our previous work [5], we proposed an algorithm that
attempts to offload tasks of mobile applications in order to
minimize the total consumption energy of mobile devices.
We expressed a mobile application as a task flow graph and
partitioned the graph into two separate parts, one consisting
of the tasks being executed locally at the mobile device and
the other consisting of the tasks executed remotely at the
cloud server. The authors [6] proposed an offloading algorithm
that attempts to minimize the response time of an application.
However, they considered only one application in the system

and furthermore the offloading decision is made based on
the function call graph, i.e., the call relationship between the
tasks. More importantly, transmission collision is not taken
into account in the previous works. In this paper, we consider
multiple mobile devices in the system each of which may
execute a distinct application and transmission collisions may
occur if more than one device transmits data simultaneously.
We focus on how to minimize the average response time of all
the mobile applications. We represent the execution of a mobile
application as a task flow graph and attempt to minimize the
path length, i.e., time required to pass through a path on the
task flow graph from the beginning task to the ending task.

The contributions of this paper can be summarized as fol-
lows. We consider the problem of minimizing the average appli-
cation response time on condition that transmission collisions
over the access network may occur. The response time of an
application means the time period starting from the instant the
application is executed to the instant the user receives the output
result. We express the execution flow of an application by a task
flow graph. We formulate the problem of how to offload tasks of
a mobile application to the server via a shared communication
channel as a Mixed Integer Programming (MIP) problem. Since
the offloading problem is NP-hard, we propose an efficient
offloading algorithm. We evaluate our proposed algorithm com-
pared with previous algorithms and show that our proposed
algorithm outperforms previous algorithms significantly both
in the application response time and the energy consumption.

II. RELATED WORK

Deploying small-scale servers at the edge of the Internet is
a promising way for mobile cloud computing to provide pow-
erful computing resources to mobile devices with low latency.
Computation-intensive and time-sensitive applications such as
augmented reality [7] and face recognition [6] implemented on
mobile devices can offload computation intensive tasks to the
edge servers to reduce both the application response time and
the energy consumption. Computation offloading approaches
from an application viewpoint are proposed by the authors [8]–
[10] in which an application is considered as an inseparable
job and offloaded to the cloud server for remote execution.
They formulated the problem of how to reduce the energy
consumption as a noncooperative game and showed that there
exists a Nash equilibrium for mobile users to offload or not.
However, an application is usually comprised of a number
of dependent tasks each of which can be considered as an

independent entity for offloading, leading to shorter application
response time.

More recently, researchers [4], [11], [12] focused on the
problem of how to partition and offload computation tasks
of an application in order to speed up the execution of the
application. Ra et al. [4] proposed a greedy offloading algorithm
for mobile applications each of which consists of multiple tasks
that are processed sequentially. M. Jia et al. [11] proposed
to express an application as either a parallel or a sequential
task flow graph and designed a heuristic offloading algorithm
that tries to balance the load between mobile devices and the
cloud server. However, the relations between computation tasks
of an application are generally complicated and can not be
simply expressed by only a parallel or chain flow graph. Yang
et al. [12] proposed a heuristic offloading algorithm that aims
to minimize the average response time of applications each
of which consists of a simple task chain. However, there is
no work in the literature taking into account of the collision
between data transmissions over the access network connecting
mobile devices to the server.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Mobile Cloud Computing System Model

Fig. 1. MCC
System model.

Fig. 2. Network
model. Fig. 3. Application model.

We consider a mobile cloud computing (MCC) system model
as shown in Fig.1 where a set of mobile devices, denoted by
N = {1, 2, · · · , N}, are connected to an edge server, also
simply called a server, that is deployed at the edge of the
Internet near mobile devices and works as a small-scale cloud
server for the mobile devices. The server has more powerful
computing resources than any mobile device and a number of
mobile devices are connected to an access point (AP) via a
shared radio communication channel, e.g., a wireless network.
The AP is connected to the edge server via a high speed link
and the transmission delay between AP and edge server can be
neglected.

The network model considered in this paper is shown in
Fig.2. We assume that two or more than two mobile devices
may compete with one another for the shared communication
channel for data transmission if they transfer data to the server
simultaneously. We assume that the data transmission over
the shared channel is performed based on the first-in-first-out
(FIFO) principle and an ongoing data transmission cannot be
interrupted by any other transmission.

B. Application Model

We assume that each user i executes only one application at
his/her mobile device and the application of user i consists of a
set of inseparable tasks Mi = {0, 1, 2, · · · ,M i} which are all
eligible for offloading except tasks 0 and M i. Hereafter, we use
a user, an application, or a mobile device interchangeably. We
represent the execution of application i by a directed task flow

graph as shown in Fig.3 in which the set of nodes indicate
the computation tasks of application i. Furthermore, the arc
between two nodes, denoted by eij,k ∈ E i, indicates that task
j sends its output data to task j. The data size transmitted
from task j to k is denoted by dij,k and we assume that the
transmission delay from task j to k can be neglected if tasks j
and k are executed both at the same location, either at a mobile
device or at the server. We assume that both the server and a
mobile device have enough CPU resources so that the tasks can
be processed in parallel if necessary. Furthermore, we assume
that a task can start its computation only if it receives all the
input data from its previous tasks.

C. Computation Offloading Problem

Our objective in this paper is to offload computation tasks of
mobile applications so as to minimize the average application
response time. When a mobile application is executed at a
mobile device, the information on the application such as the
computation workload of each task and data size transmitted
between tasks is sent to the edge server. The server then
determines which tasks should be offloaded and then sends
the offloading decision back to the mobile device. Since the
information about the applications and the offloading decisions
is negligibly smaller than the data size sent between tasks, only
the delays of data transmission between tasks are taken into
account.

The execution times for a task j of application i locally at
mobile device i and remotely at the edge server are denoted
by mi

j and cij , respectively, and we assume that mi
j ≥ cij . The

beginning and ending times of the executions of task j are
denoted by τ ij and T ij , respectively. Furthermore, the beginning
and ending times of the data transmission from task j to k are
denoted by yij,k and W i

j,k, respectively. We use a binary integer
variable xij as the decision variable to show whether to offload
task j or not. The value of xij is 1 if task j of application i is
determined to offload to the server and 0 otherwise. We let xi =
{xij}, j ∈Mi and x = {xij , j ∈Mi, i ∈ N}. We use a binary
integer variable αij,k to indicate whether two consecutive tasks
j and k are processed at different locations either at mobile
device or at the server. The value of αij,k is 1 if tasks j and k are
processed at different locations and 0 otherwise. Furthermore,
we use a binary integer variable βi,i

′

j,k,j′,k′ to indicate the order
of two data transmissions from task j to k for application i and
from task j′ to k′ for application i′. The value of βi,i

′

j,k,j′,k′ is
given by the following relation.

βi,i
′

j,k,j′,k′ =

{
1, ∀yij,k ≤ yi

′

j′,k′

0, ∀yij,k > yi
′

j′,k′
(1)

The schedule for executing a mobile application i is denoted
by Si = {xij , τ ij , yij,k}, j ∈ Mi, eij,k ∈ E i, i ∈ N . The main
notation used in this paper is shown in Table I.

Since a data transmission between two tasks may collide
with another data transmission at the shared channel, we need
to avoid a possible collision. For an application i, we have the
following relations for tasks j and k, and data transmissions
between tasks j and k.

TABLE I. Notation used in this paper.

Symbol Meaning
N set of applications
Mi set of tasks of application i
Ei set of directed link connecting two tasks of application i
mi

j execution time of task j of application i at mobile device
cij execution time of task j of application i at cloud server
τ i
j beginning time of execution of task j of application i
T i
j ending time of execution of task j of application i

eij,k link from task k to j on the task flow graph of application i
yij,k beginning time for data transmission from task j to k of appli-

cation i
W i

j,k ending time for data transmission from j to k of application i
xi
j decision variable indicating whether to offload task j of applica-

tion i to cloud
αi

j,k a binary integer variable indicating whether two consecutive tasks
j and k of application i are executed at different sides, either at
mobile device or at the server

dij,k data size transmitted from task j to k of application i

βi,i′

j,k,j′,k′ a binary integer variable indicating whether the transmission from
tasks j to k of application i precedes another transmission from
tasks j′ to k′ of application i′

s channel transmission rate
Si execution schedule for application i

W i
j,k = yij,k + αij,kd

i
j,k/s, j, k ∈Mi, eij,k ∈ E i, (2)

T ik = τ ik + xikc
i
k + (1− xik)mi

k, k ∈Mi, (3)

αij,k = |xij − xik|, j, k ∈Mi, eij,k ∈ E i, (4)
Here, relation (2) means that task k receives the data sent from
task j at time instant yij,k with a delay of αij,kd

i
j,k/s. Relation

(3) shows that the ending time of the execution of task k is
determined by the computation either at a mobile device or at
the server. Finally, relation (4) shows that the value of αij,k
is determined by whether two consecutive tasks j and k are
executed at different locations, i.e., if tasks j and k are executed
at different locations, αij,k = 1 and otherwise αij,k = 0. On
condition that relations (2) - (4) are satisfied, we can formulate
the task offloading problem as a mixed integer programming
(MIP) problem that minimizes the average application response
time as follows.

min T =
1

N

∑
i∈N

(
T iMi − τ i0

)
, (5)

subject to
yij,k≥τ

i
j+x

i
jc

i
j+(1−xi

j)m
i
j , j,k∈M

i,eij,k∈E
i,i∈N , (6)

τ i
k≥y

i
j,k+α

i
j,kd

i
j,k/s, j,k∈M

i,eij,k∈E
i,i∈N , (7)

yi
′

j′,k′≥W
i
j,k−I(3−β

i,i′

j,k,j′,k′−α
i
j,k−α

i′
j′,k′), j,k∈M

i,j′,k′∈Mi′ ,

eij,k∈E
i,ei
′

j′,k′∈E
i′ ,i,i′∈N ,(i,j,k)6=(i′,j′,k′), (8)

xi
j∈{0,1}, y

i
j,k≥0,j,k∈M

i,eij,k∈E
i,i∈N , (9)

where we let xi0 = 0 and xiMi = 0 for i ∈ N . Note that in
problem (5) xij and yij,k are decision variables. Constraint (6)
shows the data transmission from task j to k should be after
the completion of task j. Constraint (7) indicates that task k
can only be executed after receiving all the input data from its
previous tasks j (eij,k ∈ E i). Constraint (8) guarantees that at
any time instant there can be only one data transmission on
the shared channel. For two transmissions, from task j to k
of application i and from task j′ to k′ of application i′ ,i.e.,
αij,k = αi

′

j′,k′ = 1, if the transmission beginning time yij,k is
earlier than yi

′

j′,k′ ,i.e., βi,i
′

j,k,j′,k′ = 1, yi
′

j′,k′ must be later than

the transmission ending time W i
j,k. A positive constant, denoted

by I , is set to be greater than any other variables and is used
to guarantee that yi

′

j′,k′ can be earlier than W i
j,k when one of

αij,k, αi
′

j′,k′ and βi,i
′

j,k,j′,k′ is 0. Finally, constraint (9) shows the
integrality and the nonnegativity constraints for xji and yij,k,
respectively. Unfortunately, it is difficult to find the optimal
solution for the problem (5) and in this paper we propose a
heuristic offloading approach that yields very efficient solutions
in realistic system scenarios.

IV. PROPOSED COMPUTATION OFFLOADING ALGORITHM

Our proposed offloading algorithm consists of three sub-
algorithms: the first one determines the optimal offloading tasks
for an application with a simple task chain, the second one
considers only one application in the system and makes the
optimal offloading decision for each task on the task flow
graph shown in Fig.3, and the third one considers multiple
applications and the applications may compete with one another
for the shared communication channel.

A. Single-User Chain-Application (SUCA) Offloading Algo-
rithm

Fig. 4. A chain application.

We first consider how to offload a simple application that
contains only a task chain as shown in Fig.4. For the sake of
simplicity, we omit i from the superscripts of the variables. That
is, xij , m

i
j , c

i
j , d

i
j,k, eij,k, Mi, and E i are simply denoted by

xj , mj , cj , dj,k, ej,k,M, and E . The relations (2)–(4) hold for
this single-user chain-application offloading (SUCA) problem
and the problem can be formulated as follows.

min T = TM − τ0, (10)
subject to

yj,j+1≥τj+xjcj+(1−xj)mj , j,j+1∈M,ej,j+1∈E, (11)
τj+1≥yj,j+1+αj,j+1dj,j+1/s, j,j+1∈M,ej,j+1∈E, (12)
xj∈{0,1}, yj,j+1≥0, j,j+1∈M,ej,j+1∈E, (13)

where we let x0 = 0 and xM = 0. We see from [13],
[14] that a chain application can be offloaded at most only
once. Furthermore, we can show the beginning and the ending
offloaded tasks satisfy the following theorem.
Theorem 1: For a mobile application with a simple task chain
from 0 to M , suppose that there exists an optimal offloading
decision, with the beginning and ending offloaded tasks j∗ and
k∗, respectively, and that the offloading decision yields the least
response time. Then, the optimal beginning task j∗ remains
unchanged even if the ending offloaded task k∗ is moved to
M−1. Similarly, the optimal ending offloaded task k∗ remains
unchanged even if the beginning offloaded task j∗ is moved to
1.

The proof of Theorem 1 is omitted due to the space lim-
itation. According to Theorem 1, we can find the optimal
beginning and ending offloaded tasks respectively by scanning
the task chain at most twice. The following SUCA algorithm is

used to determine the optimal beginning and ending offloaded
tasks for a chain application. Here, the beginning and the
ending offloaded tasks are chosen from the ranges of [1, J0]
and [K0,M − 1], respectively, where J0 and K0 are given pa-
rameters. The computation complexity of the SUCA algorithm
is bounded by O(M).

Algorithm 1 Single-user chain-application (SUCA) offloading algo-
rithm.
Input: : mj , cj (j ∈ M), dj,k (ej,k ∈ E), s, J0, K0

1: compute completion time, Tmax =
∑M−1

j=1 mj , without offloading any task
2: compute the completion time with offloading tasks from j (j ∈ [1, J0]) to M − 1

and determine task j∗ that yields the shortest completion time
3: compute the completion time with offloading tasks from 1 to k (k ∈ [K0,M − 1])

and determine task k∗ that yields the shortest completion time
4: compute completion time Tj∗,k∗ with j∗ to k∗

5: if Tj∗,k∗ ≥ Tmax then
6: return null
7: else
8: return beginning and ending offloaded tasks j∗ and k∗

9: end if

B. Single-User General-Application (SUGA) Offloading Algo-
rithm

In SUGA, we consider only one application whose tasks can
be processed parallelly and/or sequentially as shown in Fig.3
but the collision of data transmission is not taken into account.
We also omit i here from the symbols used for the variables.
Note that the relations (2)–(4) also hold here and the offloading
problem can be formulated as follows.

min T = TM − τ0, (14)
subject to

yj,k≥τj+xjcj+(1−xj)mj , j,k∈M,ej,k∈E, (15)
τk≥yj,k+αj,kdj,k/s, j,k∈M,ej,k∈E, (16)
xj∈{0,1}, yj,k≥0, j,k∈M,ej,k∈E, (17)

where we let x0 = 0 and xM = 0.
The offloading decision for a single-user general application

are based on the following two considerations. 1) In order to
minimize the completion time of an application we need to
minimize the path length from task 0 to M on the task flow
graph. The length of a path means the sum of the task execution
times and the transmission delays along the path from task 0
to M on the task flow graph. 2) Since a path from task 0 to
M can be considered as a task chain, the tasks on any path
can be offloaded only once and the offloaded tasks should be
consecutive. The SUGA algorithm is described in Algorithm
2 in details. In each iteration, we decide at least one task that
should be offloaded, and therefore the worst case computation
complexity of SUGA is bounded by O(M3).

C. Multi-User General-Application (MUGA) Offloading Algo-
rithm

In real systems, there are multiple applications in the system
and transmission collisions may occur if more than one mobile
device try to send data simultaneously. In this paper, we
consider the problem of how to offload multiple applications
via a shared channel and formulate the offloading problem
as a MIP problem (5). Since the problem is NP-hard, we

Algorithm 2 Single-user general-application (SUGA) offloading algorithm.

Input: : cj ,mj , dj,k (j, k ∈ M, ej,k ∈ E), s
1: let L = {M}, C = ∅ and xj = 0 (j ∈ M)
2: calculate the completion time along the longest path from task 0 to M , Tmax

3: repeat
4: find the current longest path p from task 0 to M
5: if xj > 0 such that task j is on path p then
6: set the first and the last offloaded tasks along p to be J0 and K0, respectively
7: else
8: set the next task from 0 and the previous task to M along p to be K0 and

J0, respectively
9: end if

10: run Algorithm 1 to determine the beginning and ending offloaded tasks j∗ and
k∗ respectively on path p

11: set xj = 1 for each task on the bypass of path p from j∗ to k∗ and let
C = C ∪ j, L = L \ j

12: calculate the completion time from task 0 to M along path p, Tp

13: if Tp > Tmax then
14: Let xj = 0 (j ∈ M) break from repeat loop
15: end if
16: for each bypass pij from an offloaded task i to j (i, j ∈ C) do
17: if task k on path pij and k ∈ L then
18: Let xk = 1 and C = C ∪ k, L = L \ k
19: end if
20: end for
21: until no new offloading task can be found
22: return offloading decision x = {x0, x1, · · · , xM}

propose a heuristic algorithm, called MUGA, that determines an
offloading schedule for all the applications so as to minimize
the average application response time. The MUGA algorithm
is adaptive in nature in the sense that an application can be
executed at any time. When an application i is newly executed,
the MUGA algorithm determines the offloading schedule for
application i and, if necessary, updates the offloading schedules
for other applications i′ (i′ < i) that have been executed
earlier than application i. The MUGA algorithm is described
in Algorithm 3 and consists of the following three phases.

1) Initial schedule determination: The offloading decision
for each task k of application i, i.e., xik, k ∈ Mi, is made by
using the SUGA algorithm. The beginning and ending times
of the execution of task j, i.e., τ ij and T ij , and the beginning
and ending times for data transmission from task j to k, i.e.,
yij,k and W i

j,k, are determined without considering the channel
capacity constraints, respectively. The initial schedule, Si, is
obtained by steps 2 ∼ 3 of Algorithm 3.

2) Elimination of interruption to existing application: Since
the transmission collision is not considered in Phase 1, a
data transmission of application i may collide with another
transmission of existing applications i′ (i′ < i). Therefore,
we need to determine whether to postpone the collided data
transmissions of application i or change the offloading deci-
sions. If a data transmission of application i from task j to k
collides with another data transmission of applications i′ and
can be postponed, the offloading decision of task k along with
its descendant offloaded tasks are kept no change. Otherwise,
if it is beneficial to process task k locally at the mobile device,
the offloading decision will be changed; i.e., let xik = 0 and
its descendant offloaded tasks will be examined recursively.
That is, if a data transmission of application i from task j to
k with the earliest data transmission time yij,k collides with
another data transmission of existing application i′ from task
j′ to k′, we compare the completion time when offloading task
k with that when not offloading task k, i.e., by comparing

T + W i′

j′,k′ − yij,k with T ′. If T ′ ≥ T + W i′

j′,k′ − yij,k, the
offloading decision will not be changed; otherwise, task k will
be processed locally and schedule Si will be updated.

3) Rescheduling colliding transmissions: Once the offload-
ing decision of application i is made, the data transmissions
of all the applications to and back from the edge server are
examined and if necessary rescheduled based on a First-In-
First-Out (FIFO) basis. Furthermore, if a task needs to transfer
data to more than one following task via the shared channel, we
need to determine to which one the data should be transferred
first. For example, if task j′ needs to send data to two tasks k′

and k′′, we need to determine to which one (k or k′) the data
should be transferred first. In the MUGA algorithm, the longer
of two paths from task j′ to M i′ via tasks k′ and k′′ will be
chosen to transfer data first.

The worst case computation complexity of MUGA is bound
by O

(
|M i|3

)
, where |M i| denotes the number of tasks of

application i.

V. PERFORMANCE EVALUATION

We examined the performance of our proposed algorithm
compared with two previous algorithms [5], [6], denoted by
”Energy-based” and ”Partial offloaded” in the figures, respec-
tively. Two extreme cases, denoted by ”Full-offloaded” and
”No offloaded”, respectively, were also simulated and in the
former all the tasks except task 0 and M i of application i
are offloaded while in the latter no task will be offloaded. We
simulated a network model with 1000 mobile devices each of
which runs a face recognition application [6]. Each application
consists of 22 tasks and is represented by a flow graph as shown
in Fig. 5. We assumed that the data size transmitted between
tasks and the execution times of the tasks of each application
are different from others.

Fig. 5. Flow graph of face recognition application.

The computation times of tasks from mi
1 to mi

22 were
generated randomly between [4, 12]s but the computation times
of tasks mi

0 and mi
23 were 0. The inter-execution time of an

application was assumed to follow the exponential distribution.
The size of data sent between two tasks was generated ran-
domly between [10, 40]MB. The results shown in the figures
are the sample means obtained by the simulation with 95%
confidence interval. The half widths of the confidence intervals
are all less than 3% of the sample means and therefore are not
shown in the figures. Simulation program was developed using
Python 3.5 on a Microsoft Windows 10 computer with the Intel
E3-3.0GHz CPU and 24GB memory.

A. Effect of communication speed

Fig.6 shows the average application response times obtained
by various algorithms when changing the speed of the shared
channel. The ratio of computation speed of the server to a

Algorithm 3 The multi-user general-application (MUGA) offloading
algorithm.

Input: : cij ,m
i
j , d

i
j,k (j, k ∈ Mi, eij,k ∈ E

i, i ∈ N), s, S(S =
⋃

i∈N S
i)

Output: : updated schedule S
1: calculate the completion time of application i, denoted by T i

L, without offloading
any task, and the total completion times of all the other applications, TO =∑i−1

l=1 (T l

Ml − τ
l
0)

/* steps 2 ∼ 3: determine initial schedule Si */
2: run Algorithm 2 to obtain an offloading decision for application i, xi

3: determine the initial schedule for application i, Si, using xi without considering
transmission collision
/* steps 4 ∼ 18: eliminate interruption to existing applications */

4: while any xi
l > 0 (l ∈ Mi) do

5: calculate the completion time of application i, denoted by T , based on the current
Si

6: find the earliest beginning time for transmission from task j to k, yij,k , for
application i

7: find the last ending time for data transmission from task j′ to k′, W i′
j′,k′ , for

application i′ (i′ < i) such that T i′
j′ ≤ y

i
j,k < W i′

j′,k′
8: if application i′ exists then
9: calculate the completion time of application i, denoted by T ′, with xi

k =
0 (k ∈ Mi)

10: if T ′ ≥ T +W i′
j′,k′ − y

i
j,k then

11: break from while loop /* delaying transmission is acceptable */
12: else
13: xi

k = 0 and update Si

14: end if
15: else
16: break from while loop
17: end if
18: end while

/* steps 19 ∼ 32: reschedule colliding data transmissions */
19: while yi

′
j′,k′ ≤ y

i′′
j′′,k′′ < W i′

j′,k′ ((i
′, i′′ ≤ i), (i′, j′, k′) 6= (i′′, j′′, k′′))

do
20: if T i′

j′ < T i′′
j′′ then

21: yi
′′

j′′,k′′ = W i′
j′,k′ and update Si′′

22: else if T i′
j′ = T i′′

j′′ (i′ = i′′, j′ = j′′, k′ 6= k′′) then
23: calculate completion times of applications i′ and i′′ from task j′ to Mi′ via

k′ (denoted by ti
′

j′,k′) and task j′′ to Mi′′ via k′′ (denoted by ti
′′

j′′,k′′),
respectively

24: if ti
′

j′,k′ ≥ t
i′′
j′′,k′′ then

25: yi
′′

j′′,k′′ = W i′
j′,k′ and update Si′′

26: end if
27: end if

28: if
i∑

l=1

(T
l

Ml − τ
l
0) ≥ T

i
L + TO then

29: xi
k = 0 (k ∈ Mi) and update Si

30: restore schedules of all the applications Si′ (i′ < i) to their initial ones
before scheduling user i

31: end if
32: end while

mobile device was fixed to be 4 and the average inter-execution
time of an application was fixed to be 40s. From Fig.6, we
see that our proposed algorithm performs much better than
other algorithms for a wide range of communication speed. On
one hand, when the communication speed is extremely slow
it is not beneficial to offload any task to the server due to
the communication delay, and we can see that our proposed
algorithm performs similarly to the case of ”No offloaded”. On
the other hand, when the communication speed is very fast,
offloading tasks to the server leads to large improvement over
the response time and we can see in this case that our proposed
algorithm performs similarly to the case of ”Full offloaded”.

We also see that our proposed algorithm outperforms the
previous algorithms denoted by ”Energy-based” [5] and ”Partial
offloaded” [6]. In order not to cause any bias to the two previous
algorithms, we assumed that they know the exact transmission

delay at each time instant. Since these algorithms do not con-
sider the transmission collisions in their offloading decisions,
their performance degrades fast when the communication speed
is slow since frequent incorrect decisions are made.

Fig. 6. Effect of communication speed. Fig. 7. Effect of ratio of computing
power of server vs. device.

Fig. 8. Effect of application
inter-execution time.

Fig. 9. Energy consumption
comparison.

B. Effect of computing power of server versus a mobile device

Fig.7 shows the average application response times obtained
by various algorithms for different ratios of computing power
of the server to a mobile device. In this experiment, the
transmission speed of the shared channel was fixed to be 4Mbps
and the average inter-execution time of an application was fixed
to be 40s. From Fig.7, we can see that our proposed algorithm
performs much better than all the other algorithms. When the
computing power of the server is the same as a mobile device,
no task will be offloaded since there is no benefit to offload
due to the additional communication delay. Again, since our
proposed algorithm focuses on the application response time
and furthermore takes the transmission collisions into account,
it outperforms other algorithms.

C. Effect of application execution frequency

Fig.8 shows the average application response times of the
algorithms under consideration when changing the application
execution frequency. The shared channel speed was fixed to
be 4Mbps and the ratio of computing power of the server to
that of a mobile device was fixed to be 4. From Fig.8, we see
that our proposed algorithm behaves more stable than other
algorithms when the application execution rate changes. When
the applications are executed frequently, all of the previous
algorithms degrade much faster than our proposed algorithm.

D. Energy consumption comparison

We considered four key energy consumption parameters:
computation power for computation, state holding power for
keeping the active state but not in computation, data trans-
mission/receiving power for transferring/receiving data, and
transmission waiting power for collision avoidance. The former
three parameters were set to 0.6, 0.3, and 1.3W, by referring to
[6], while the fourth parameter was set to 1W. Fig.9 shows
the average energy consumption by an application for the

algorithms under consideration when changing the speed of the
shared channel. The ratio of computation speed of the server
to a mobile device was fixed to be 4 and the average inter-
execution time of an application was fixed to be 40s. From
Fig.9, we see that our proposed algorithm performs better than
other algorithms, even though the objective of our proposed
algorithm is for the minimization of the application completion
time. The main reason of this result is that in our proposed
algorithm the server determines the data transmissions of all
the applications thoroughly and clearly so that there is no need
to attempt a data transmission. Additionally, more accurate
offloading decision is made in our algorithm and therefore the
waste of power consumption can be avoided.

VI. CONCLUSION

In this paper, we focused on the problem of how to offload
computation tasks of mobile applications in order to minimize
the average application response time. We first formulated the
offloading problem as a mixed integer programming (MIP)
problem and then proposed an heuristic offloading algorithm.
We evaluated our proposed algorithm compared with previous
algorithms by simulation experiments. The results show that
our proposed algorithm outperforms significantly previous algo-
rithms for a wide range of system parameters. Furthermore, we
examined the energy consumption of our proposed algorithm
with realistic system parameters and the results also show that
our proposed algorithm yields much less energy consumption
than previous algorithms and when the network speed is slow
the energy reduction becomes significantly large.

REFERENCES

[1] X. Fan, J. Cao, and H. Mao, ”A survey of mobile cloud computing”, ZTE
Communications, Vol. 9, No. 1, 2010; 4–8.

[2] F. Liu, et al. ”Gearing Resource-Poor Mobile Devices with Powerful Clouds:
Architecture, Challenges and Applications”, IEEE Wireless Communications, Vol.
20, No. 3, 2013; 14–22.

[3] M. V. Barbera, et al. ”To offload or not to offload? the bandwidth and energy
costs of mobile cloud computing”, Proc. IEEE Int. Conf. Computer Communications
(INFOCOM2013), 2013; 1285–1293. 10

[4] M. R. Ra, et al. ”Odessa: enabling interactive perception applications on mobile
devices”, Proc. ACM 9th Int. Conf. Mobile Systems, Applications, and Services
(MobiSys2011), 2011; 43–56.

[5] Y. Tao, Y. Zhang, and Y. Ji, ”Efficient Computation Offloading Strategies for Mobile
Cloud Computing”, Proc. IEEE 29th Int. Conf. Advanced Information Networking
and Applications (AINA2015), 2015; 626–633.

[6] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, ”An Optimal Offloading Partitioning
Algorithm in Mobile Cloud Computing”, Int. Conf. Quantitative Evaluation of
Systems (QEST2016) in LNCS 9826, eds. G. Agha and B.V. Houdt, Springer, 2016;
311–328.

[7] A. B. Craig, ”Understanding Augmented Reality: concepts and applications”, 1st
Ed., Morgan Kaufmann, 2013.

[8] X. Chen, ”Decentralized computation offloading game for mobile cloud computing”,
IEEE Trans. Parallel and Distributed Systems, Vol. 26, No. 4, 2015; 974–983.

[9] X. Chen, et al. ”Efficient multi-user computation offloading for mobile-edge cloud
computing”, IEEE/ACM Trans. Networking, 2015; 1–14.

[10] E. Meskar, et al. ”Energy efficient offloading for competing users on a shared
communication channel”, Proc. IEEE Int. Conf. Communications (ICC2015), 2015;
3192–3197.

[11] M. Jia, J. Cao, and L. Yang, ”Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing”, Proc. IEEE Int.
Conf. Computer Communications Workshops (INFOCOM WKSHPS), 2014; 352–
357.

[12] L. Yang, et al. ”Multi-user computation partitioning for latency sensitive mobile
cloud applications”, IEEE Trans. Computers, Vol. 64, No. 8, 2015; 2253–2266.

[13] S. Yang, et al. ”Application offloading based on R-OSGi in mobile cloud comput-
ing”, Proc. IEEE Int. Conf. Mobile Cloud Computing, Services, and Engineering
(MobileCloud2016), 2016; 7 pages.

[14] Y. Zhang, et al. ”To offload or not to offload: An efficient code partition algorithm
for mobile cloud computing”, Proc. IEEE Int. Conf. Cloud Networking (CLOUD-
NET2012) 2012; 80–86.

